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Abstract

Real neurons, and their networks, are far too complex to be described exactly by simple

deterministic equations. Any description of their dynamics must therefore incorporate noise

to some degree. It is my thesis that the nervous system is organized in such a way that its

performance is optimal, subject to this constraint. I further contend that neuronal dynamics

may even be enhanced by noise, when compared with their deterministic counter–parts.

To support my thesis I will present and analyze three case studies. I will show how noise

might (i) extend the dynamic range of mammalian cold–receptors and other cells that

exhibit a temperature–dependent discharge; (ii) feature in the perception of ambiguous

figures such as the Necker cube; (iii) alter the discharge pattern of single cells.
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Chapter 0
Preface

“noise (Telecomm.). (1) In general, any unwanted disturbance super–imposed

on a useful signal and tending to obscure its information content.” [Wal91]

Most definitions of noise tend to the negative. Noise is too often seen as disruptive and as

something to be minimized or restricted. It is my contention that this narrow view is often

not applicable to neural systems. The theme that runs through this thesis is that noise can

assist the entrainment of a dynamical system to a weak periodic forcing, and a leitmotif is

the quantification of this phenomena by a measure due to Gammaitoni et al. [GMS95].

Outline

After a preliminary discussion of some relevant techniques and neuro-physiology, this thesis

tackles three topics, which represent three levels of the hierarchy by which information

processing may be supposed to occur in the brain.

Noise and the single cell: In chapter 3 I present a tractable stochastic phase–model of

the temperature sensitivity of a mammalian cold receptor. These cells are free nerve endings

that exhibit a highly temperature–dependent discharge pattern. The neuro–physiological

evidence supports a simple model that comprises a slow oscillation of the neuronal mem-

1
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brane potential coupled to some noise source. I first show how this simple model may derive

from more complete models, such as those based on the dynamics of ion channels. Using

simple linear dependencies on temperature of the model’s parameters, I then show that this

model can reproduce the experimentally observed transitions between bursting, beating and

stochastically phase–locked firing patterns. I analyze the model in the deterministic limit

and predict, using Floquet theory and the Strutt map, the number of spikes–per–burst for a

given temperature. The inclusion of noise produces a variable number of spikes–per–burst,

and also extends the dynamic range of the neuron, both of which are analyzed in terms

of the Strutt map. I also characterize the noise-induced trapping and stochastic resonance

effects that appear near the onset of deterministic firing.

Noise at the network level: Chapter 4 represents my work on a model for the perceptual

interpretation of ambiguous figures. An ambiguous figure is one that admits two or more

perceptual alternatives (a common example is the Necker cube). It is known that an ob-

server studying such a figure over a long time period, finds that his (or her) interpretation

of the figure randomly and continually switches between the possible alternatives. This

phenomena is called reversal. I introduce a simple model, due to Haken [Hak91], that may

be considered as a model for the interpretive process and I examine how this model may be

extended to describe reversal. When the ambiguous figure is periodically modulated in some

manner, reversal can become entrained to the modulation in a way that resembles stochastic

resonance. I show how a similar noisy–resonance phenomenon can occur in Haken’s model,

and I further show that at resonance, the theoretical transition rate between states matches

the driving frequency. I further show that this effect persists when a diffusive coupling is

introduced into the network, a technique that leads to a more robust system.

Sub–cellular processing in the presence of noise: I develop, in chapter 5, a simple

model of a spiking neuron that displays threshold and quantal synaptic noise. I show

analytically that there are parameter regimes for which these two types of noise generate an

effective asymmetric–bistable potential function for the dynamics. The two stable states of

the potential correspond to a de–polarized bursting state and to a hyper–polarized quiescent

state, and the membrane potential of the neuron executes a random walk between them.
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Thus, noise can fundamentally alter the neuronal discharge from a simple spiking regime

to a regime of highly–correlated bursts. The parameters of the noise distributions alter the

shape of the generalized potential, and hence also characteristics of the discharge pattern.

Increasing synaptic noise increases the length of the burst, while increasing the threshold

noise increases the interval between bursts. Finally I show that a weak periodic modulation

of the system induces stochastically phase–locked transitions from the quiescent to the

bursting state, and the transition rate exhibits a form of stochastic resonance.

Theory should never be presented without some form of supportive experimental evidence.

In this work, such evidence is provided by numerical simulations and so the thesis concludes

with an appendix that discusses the numerical techniques that I have used.



Chapter 1
A review of concepts and tools

To avoid disrupting the thread of a later narrative, I wish to review here some useful

mathematical tools and concepts.

1.1 Noise

The term noise describes fluctuations in some parameter that derive from non–deterministic

behaviour1. To indicate briefly possible physical origins of noise, I wish to sidestep a philo-

sophical red herring and to draw an analogy with the equilibrium thermodynamics and

statistical physics of a classical, ideal gas2.

Each individual atom of an ideal gas may be considered as a point particle that moves

chaotically but deterministically. A mole of such a gas comprises ∼ 1023 atoms, all of which

are in motion. The equilibrium properties of the gas are well described by a small number

of macroscopic parameters such as the pressure and temperature. These state variables

derive from the collective motion of the atoms, and their equilibrium values are functions
1The spin–glass paradigm of neural systems [Hop82] has fostered the terminology of ‘fast’ and ‘slow’

noise. All fluctuations considered by this thesis operate on similar time–scales to that of their corresponding

system’s dynamics and so are fast noise.
2The extension to a quantum description merely includes a further source of randomness.

4



1.1. NOISE 5

of the mean positions and momenta of the atomic ensemble. However, close examination

of the state variables shows that they are not truly constant but in fact fluctuate rapidly

about some average value. These statistical distribution of these fluctuations is generally

well–defined, with a variance D that is given by Einstein’s fluctuation–dissipation relation

D =
2kT

f
(1.1)

where T is the absolute temperature, and f the viscosity of the gas. Therefore, even though

fluctuations in the state variables might have a deterministic origin at the atomic level,

their macroscopic effects can only be analysed statistically.

To continue the analogy, biological systems such as neurons comprise many interacting

subsystems. Facets of their behaviour may be also described by macroscopic state variables,

e.g. neurotransmitter release rate. Neural description based on these state variables either

neglects or approximates much of the sub–cellular processing and so it is unsurprising that

such coarse–grained approximations must incorporate noise to some degree.

Noise falls naturally into two categories: external and internal noise3. External noise is

caused by some force acting upon the system under investigation. Its archetype is Brown-

ian motion, whereby the collective, stochastic motions of microscopic molecules cause the

random trajectory of a macroscopic pollen particle. External noise acts as an imposed force,

and it is not affected by the system’s dynamics. Mathematically, it enters the dynamical

equations via additive coupling and (in principle) can be switched off. Internal noise derives

from fluctuations inherent to the system. It is intimately related to the system’s evolution,

and is best described mathematically by a multiplicative term.

Within this thesis I will consider non–inertial systems subject to an external noise, ζ(t),

and so described by Langevin equations of the general form

d
dt

x(t) = F (x, t) + ζ(t) (1.2)

3More properly, the distinction between external and internal noise is somewhat artificial and depends

upon how one designates the boundaries of the system.
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where x(t) is some state variable.

A randomly fluctuating variable ζ(t) is completely specified by its temporal correlation4

and by its probability distribution P (X ) ≡ P (ζ(t) = X ). Where P (X ) is the probability

that at a time t, ζ takes the value X . The determination of the probability distribution

of a real, physical system is generally achieved by fitting a curve to a set of measurements

taken from different realizations of the system. However, such a technique is not always

reliable or accurate, and more often all that can be ascertained about the distribution

are its moments, e.g. the mean, the variance and the kurtosis. These quantities are not

very informative about the underlying dynamics, instead a more useful object is the auto–

correlation function, defined by

G(t′ − t) = lim
T →∞

1
T

∫ T

0
dt x(t)x(t′) (1.3)

this is the temporal average of a two time product, measured over an arbitrary time T which

is then allowed to become infinite. There exist many techniques for measuring approxima-

tions to the auto–correlation (see e.g. [DeF81]). Furthermore, from the Wiener–Khinchin

theorem (see e.g. [vK92]), the power spectral density (PSD), S(f), of a stationary process5

is given by the Fourier transform of its auto–correlation function, so that

S(f) =
2
π

∫ ∞

0
dt cos(ft)G(t) (1.4)

(since the auto–correlation function is an even function, the Fourier transform may be

replaced by a cosine transform). The PSD describes the frequency distribution of the

power in the random signal x(t). The simplest (and hence possibly the least physical) noise

source is Gaussian noise: at a time t, ζ(t) is drawn from the distribution

N(ζ, σ) =
1√

(2πσ2)
exp

(
−(ζ −m)2

2σ2

)
(1.5)

4Extended systems may also display spatially correlated noise but this will not be considered here.
5i.e. a system whose fluctuations are drawn from a distribution with time–invariant moments.
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Gaussian noise therefore has mean m and is delta–correlated, so that

〈ζ(t)〉 = m and 〈ζ(t)ζ(t′)〉 = σ2δ(t− t′) (1.6)

a Fourier transform of its auto–correlation function is therefore a constant over the entire

spectrum. By analogy with light, Gaussian noise is therefore also called white noise.

1.2 The master equation

A stochastic process, ζ(t), is called Markovian if the probability that is in a given state at a

time t2 is deducible from the knowledge of its state at a previous time t1, but is independent

of its history before t1 (see appendix B.2 for a more rigorous definition).

Some definitions for the stochastic process ζ(t)

• p1(X1, t1) is the probability density that ζ(t) takes the value X1 at a time t1.

• p2(X1, t1;X2, t2) is the joint probability density that ζ(t) takes the value X1 at a time

t1, and the value X2 at a time t2.

• pn(X1, t1;X2, t2; . . . ;Xn, tn) is the joint probability density that ζ(t) takes the value

X1 at a time t1, the value X2 at a time t2, . . . and the value Xn at a time tn.

• p1|1(X2, t2|X1, t1) is the conditional probability density that ζ(t) takes the value X2 at

a time t2, given that it takes the value X1 at a time t1.

• p1|n−1(Xn, tn|X1, t1, . . . ,Xn−1, tn−1) is the conditional probability density that ζ(t)

takes the value Xn at a time tn, given that it takes the value Xn−1 at a time tn−1,

. . . and the value X1 at a time t1.

where the conditional probability density p1|1(. . . | . . .) is defined by

p1|1(X2, t2|X1, t1) =
p2(X1, t1;X2, t2)

p1(X1, t1)
(1.7)
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and is also referred to as the ‘transition probability’ from state X1 to X2.

The Markov property may therefore be abbreviated to

p1|n−1(Xn, tn|Xn−1, tn−1, . . . ,X1, t1) ≡ p1|1(Xn, tn|Xn−1, tn−1) (1.8)

and so given the temporal hierarchy t3 > t2 > t1 and using equation (1.7)

p3(X1, t1;X2, t2;X3, t3) = p2(X1, t1;X2, t2)p1|2(X3, t3|X2; t2,X1, t1)

= p1(X1, t1)p1|1(X2, t2|X1, t1)p1|1(X3, t3|X2, t2) (1.9)

Integration over all intermediate states X2 and division by p1(X1, t1) gives the Chapman–

Kolmogrov equation

p1|1(X3, t3|X1, t1) =
∫

dX2 p1|1(X2, t2|X1, t1)p1|1(X3, t3|X2, t2) (1.10)

Subject to time–ordering, i.e. that t2 lies between t1 and t3, the Chapman–Kolmogrov

equation states that the transition probability density from state X1 to state X3 is the

integral (or sum) over all possible intermediate states of the probability of transition X1 →
X2 → X3.

A differential equation for the probability density can be found by first integrating the

Chapman–Kolmogrov equation w.r.t. X1 and re–labeling its indices, so that

p1(X2, t2) =
∫

dX1 p1|1(X2, t2|X1, t1)p1(X1, t1) (1.11)

setting t2 = t1 + δt, then the time derivative of p1(X , t) is given by

∂

∂t
p1(X , t) = lim

δt→0

p1(X , t + δt)− p1(X , t)
δt

(1.12)
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Evaluation of equation (1.12) requires computation of p1|1(X2, t1 +δt|X1, t1). Taylor ex-

panding in powers of δt, and ensuring that normalization is preserved

p1|1(X2, t1 + δt|X1, t1) = p1|1(X2, t1|X1, t1) + δt
∂

∂t
p1|1(X2, t1|X1, t1) + . . . (1.13)

truncate at first order, and use the fact that p1|1(X2, t1|X1, t1) = δ(X2 −X1). Furthermore,

note that the second term on the RHS, ∂p1|1/∂t, is made up of two parts – transitions

into the state, and transitions out of the state. Define the transition probability density

per–unit–time, Wt1(X1,X2), that the system changes from X1 to X2 within the time interval

t1 → t1 + δt, so that

p1|1(X2, t1 + δt|X1, t1) = δ(X2 −X1) + Wt1(X1,X2)δt

− δt

∫
dX Wt1(X1,X )δ(X2 −X1) (1.14)

substituting (1.14) into (1.11) and then into (1.12), one obtains

∂

∂t
p1(X2, t) = lim

δt→0

δt
∫

dX1 [p1(X1, t1)Wt1(X1,X2)]− δt
∫

dX [p1(X2, t1)Wt1(X2,X )]
δt

re–labeling the second integral, so that X → X1, to arrive at the master equation

∂

∂t
p1(X2, t) =

∫
dX1 [p1(X1, t1)Wt1(X1,X2)− p1(X2, t1)Wt1(X2,X1)] (1.15)

The master equation has the form of a balance equation. It gives the rate of change of

the probability density due to transitions into the state X2 from all other states X1, and

transitions out of X2 into any other state X1. The master equation is not only more

tractable than the corresponding Chapman–Kolmogrov equation, but it is also easier to

interpret physically.
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1.3 The Fokker–Planck equation

A description that complements the Langevin approach of equation (1.2) is that of the

Fokker–Planck equation. This partial differential equation is the equation of motion of

the probability distribution P (x, t) of the state vector x, and it derives from the master

equation.

Express the transition probability W (. . .) as a function of the size of the jump

W (X ′,X ) → W (X ′; r), with r ≡ X − X ′ (1.16)

so that the master equation becomes

∂

∂t
p(X , t) =

∫
dr W (X − r; r)p(X − r, t)− p(X , t)

∫
dr W (X ;−r) (1.17)

Assume that only small jumps occur, i.e. ∃ δ > 0, s.t.

W (X ′; r) ' 0 ∀ |r| > δ (1.18)

W (X ′ + ∆X ; r) ' W (X ; r) ∀ |∆X| < δ (1.19)

and so the transition probability W (X ′; r) is a strongly peaked function of r, but varies only

slowly with X ′. Furthermore, assume that p(X , t) also varies slowly with X . Consequently,

the first integral of equation (1.17) can be dealt with by a Taylor expansion. To second

order:

W (X − r; r)p(X − r, t) ' W (X ; r)p(X , t) − r
∂

∂X [W (X ; r)p(X , t)]

+
r2

2
∂2

∂X 2
[W (X ; r)p(X , t)] (1.20)

and so equation (1.17) becomes

∂

∂t
p(X , t) =

∫
dr W (X ; r)p(X , t)−

∫
dr r [W (X ; r)p(X , t)]
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+
∫

dr
r2

2
∂2

∂X 2
[W (X ; r)p(X , t)]− p(X , t)

∫
dr W (X ;−r) (1.21)

the first and last terms on the RHS cancel, leaving the second–order Kramers–Moyal ex-

pansion of the master equation6.

Now introduce the ‘jump moments’ (i.e. the mean and variance of the fluctuations)

D(n) =
∫ ∞

−∞
dr rnW (X ; r) (1.22)

such that Kramers–Moyal expansion may be written

∂

∂t
p(X , t) = − ∂

∂X
[
D(1)(X )p(X , t)

]
+

1
2

∂2

∂X 2

[
D(2)(X )p(X , t)

]
(1.23)

which is the one–dimensional Fokker–Planck equation. The coefficients, D(1)(X ) and D(2)(X )

are termed the drift and the diffusion, and since they are moments of the fluctuation distri-

bution, the Fokker–Planck equation may be specified without any knowledge of the kernel

W (. . .). Thus, a Langevin system (1.2) subject to a Gaussian noise (1.6) has drift and

diffusion

D(1)(x) = 〈x〉 = F (x) and D(2)(x) = 〈x2〉 = σ2 ≡ D (1.24)

In fact, for any one–dimensional system, there exists [Ris89] a change of variables, say

X → Y, that transforms any Fokker–Planck equation into one with a constant diffusion

term, i.e. D(1)(X ) → D(1)(Y), D(2)(X ) → D.

The Smoluchowski equation

The Smoluchowski equation is a special case of the Fokker–Planck equation and describes

the motion of an over–damped particle in a potential U(x). It has drift and diffusion
6A theorem due to Pawula [Ris89] states that either the Kramers–Moyal expansion terminates at first or

second order, or it does not terminate at all.
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coefficients

D(1)(x) = − d
dx

U(x) and D(2) = σ2 (1.25)

The multi–variate Fokker–Planck equation

For the case of M random variables, the Fokker–Planck equation generalizes to its multi–

dimensional form [Gil96b]

∂

∂t
P (x, t) =

M∑

i=1

∂

∂xi

[
D

(1)
i (x, t)P (x, t)

]
+

1
2

M∑

i=1

∂2

∂x2
i

[
D

(2)
i (x, t)P (x, t)

]

+
M∑

i,j=1,i<j

∂2

∂xi∂xj

[
D

(3)
ij (x, t)P (x, t)

]
(1.26)

1.3.1 Stationary solutions

The uni–variate Fokker–Planck equation (1.23) may be re–written as a continuity equation

∂

∂t
p(x, t) =

∂

∂x

(
−D(1)(x) +

1
2

∂

∂x
D(2)(x)

)
p(x, t) = − ∂

∂x
J (x, t) (1.27)

where J (x, t) is a probability current.

Stationary solutions have a constant probability current. First, suppose that the current

vanishes, so that J (x, t) = 0. Integration of (1.27) yields

pst(x) =
2N0

D(2)(x)
exp

(
2

∫

x

D(1)(x′)
D(2)(x′)

dx′
)
≡ 2N0 exp (−Ξ(x)) (1.28)

where N0 is a normalization constant, and Ξ(x) a generalized potential with

Ξ(x) = lnD(2)(x)− 2
∫ x D1(x′)

D2(x′)
dx′ (1.29)
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Any stationary state with a non–zero (but constant) J can now be written in terms of this

generalized potential, so that

pst(x) = 2N0 exp [−Ξ(x)]− 2J exp [Ξ(x)]
∫

x

exp [−Ξ(x′)]
D(2)(x′)

dx′ (1.30)

1.4 Kramers’ rate theory

A Brownian particle trapped in a deep potential well (figure 1.1), resides there for a time that

exceeds all of the system’s relaxation times, and that has an Arrhenius (i.e. exponential)

dependence upon the height of the barrier. The mean escape rate7, rA, is given by the

Van’t Hoff–Arrhenius formula [HTB90]

rA = Π exp
(
−2δU

D

)
(1.31)

where δU is the height of the barrier separating the minima, D = σ2 is the noise variance

and Π is some pre–factor.

To evaluate this pre–factor, consider a Brownian particle obeying Langevin dynamics of

the form (1.2), and trapped in a meta–stable state of the potential, U(x) (figure 1.1).

Furthermore, suppose that the barrier height δU is very large and the noise is weak, i.e.

D small. Thus, both of the probability current, J , at the summit of the barrier, and the

variation with time of p(x, t) will be very small and so the particle will be in a quasi–

stationary state.

The probability density of the particle’s position, p(x, t), obeys a Smoluchowski equation

(1.25) and so this quasi–stationary solution has a generalized potential (equation (1.29))

Ξ(x) = 2
U(x)
D

(1.32)

7The mean escape rate is the reciprocal of the mean escape time from the well.
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Figure 1.1: Brownian escape from a potential well: a particle obeying Langevin dynamics

typically resides close to the minimum of the meta–stable state, but will occasionally traverse

over the barrier at xmax with a mean rate that depends exponentially upon both the noise

strength, D, and the barrier height, δU .

Furthermore, assume that if the particle escapes beyond the barrier (say to the point x̄, see

figure 1.1), it escapes to infinity and does not return (consequently put p(x̄, t) ' 0).

Following Risken [Ris89], integrate (1.27) and so write the probability current J (x, t) as

J (x, t) = −D

2
e−Ξ(x) ∂

∂x

[
eΞ(x)p(x, t)

]
(1.33)

For a stationary state, the flux over the barrier is small, as is ∂p/∂t, and so assume that

J is independent of spatial position. Integrate between xmin and x̄, and use p(x̄, t) ' 0, to

obtain

J =
D
2 exp[Ξ(xmin)]p(xmin, t)∫ x̄

xmin
dx′ exp[Ξ(x′)]

(1.34)

For a high barrier (i.e. large δU/D), the probability density close to the minimum is ap-

proximately given by

p(x, t) ' p(xmin, t) exp
[
−2

U(x)− Umin

D

]
(1.35)
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The probability of finding the particle in a region of width 2δx, centered on xmin is

P (x=xmin, t) =
∫ x+δx

x−δx
p(x′, t)dx′

= p(xmin, t) exp
[
2
Umin

D

] ∫ x+δx

x−δx
exp

[
−2

U(x′)
D

]
dx′ (1.36)

for small D, the probability density (1.35) is sharply peaked and so the actual value of δx

need not be specified.

The probability current, J , is equal to the product of the probability P and the escape rate

over the barrier r, and so from (1.34) and (1.36)

r ≡ J
P

=
(

2
D

∫ xmin+δx

xmin−δx
exp

[
−2U(x)

D

]
dx

∫ x̄

xmin

exp
[
2U(x)

D

]
dx

)−1

(1.37)

the main contribution to the first integral is from a region about xmin, while the main

contribution to the second is due to a region close to xmax. Therefore, Taylor expand the

potential U(x) to second order

U(x) ≈ U(xmin) +
1
2
U ′′(xmin) (x− xmin)2 (1.38)

U(x) ≈ U(xmax)− 1
2
|U ′′(xmax)| (x− xmax)2 (1.39)

substituting both of these into (1.37), and integrating over ±∞ gives the Kramers’ rate

rK =
1
2π

√
U ′′(xmin)|U ′′(xmax)| exp

(
−2

δU

D

)
(1.40)

note that the Arrhenius factor (exp(. . .)) depends only upon the noise strength and the

barrier height, while the pre–factor depends only upon properties of the potential’s stable

and unstable fixed points.
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1.4.1 Escape in multi–dimensional potentials

Generalization of Kramers’ rate equation (1.40) to more than one dimension is far from

trivial, and can only be computed exactly for a small class of potentials [HTB90]. However,

to briefly indicate how Kramers’ theory may be extended to compute an approximation to

the rate of escape over a saddle–point, of a damped particle confined to a two–dimensional

potential, and subject to an isotropic noise source. The method proceeds as for the one–

dimensional case of the preceding section, and again Taylor expansions for the probability

current at the saddle–point, and the probability density at the minima must be computed.

The resulting generalized Kramers’ rate (also known as the Eyring formula [MS96a]) is given

by

rK =
λ

2π

√
detH(xmin)
| detH(xs) | exp

(
−2δU

D

)
(1.41)

where the Hessian H of the potential has components

Hij =
∂U2

∂xi∂xj
(1.42)

and is evaluated at the minima, xmin, and the saddle, xs. λ is the positive eigenvalue of the

Hessian of the potential at the saddle, and δU = Us − Umin is the height of the potential

barrier at the saddle.

1.5 Stochastic Resonance

Stochastic resonance (SR) [MW89, BG96, MPO94, WM95] is a phenomenon whereby ran-

dom fluctuations and noise can enhance the detectability and/or the coherence of a weak

signal in certain nonlinear dynamical systems. The classic paradigm is one of a particle

obeying gradient (i.e. in the limit of high friction) dynamics, such that

d
dt

x(t) = − d
dx

U(x) (1.43)



1.5. STOCHASTIC RESONANCE 17

and confined to a symmetric, bi–stable potential U(x), e.g. of the form

U(x) =
1
4
x4 − 1

2
x2 (1.44)

In the absence of any external perturbations, the particle relaxes to an equilibrium state at

the bottom of one of the wells. When the particle is driven stochastically by some weak,

additive noise source (figure 1.2a) then it will spend most of its time executing a random

walk centred upon one of the potential minima. Occasional transitions between the two

wells occur with a mean rate, rK , that is given by (1.40). If, instead, the particle is subject

to a sub–threshold8 periodic forcing, say of the form A cos(Ωt), then it will oscillate about

one of the minima. Such a forcing may be interpreted as rocking the potential back and

forth. However, if both types of driving are present, the dynamical equation (1.43) becomes

ẋ = −U ′(x) + A cos(Ωt) + ζ(t) (1.45)

The system now displays noise–assisted switching (figure 1.2b): the transition rate (1.31)

becomes modulated by the periodic forcing, increasing when the barrier is lowered and

decreasing when it is raised. Thus, the particle has a greater tendency to switch when it

is aided by the periodic bias (i.e. after a residence time close to half a period) and a lesser

tendency when it is hindered.

Consider now how varying the noise strength D affects the switching process.

• In the limit D → 0, then τA À T , where T = 2π/Ω is the time period of the regular

forcing and τA = r−1
A is the mean residence time of a potential well. Thus even though

escape is most likely when the barrier is low, actual switching events will be rare and

occur on a time–scale much greater than that of the periodic forcing.

• For large D, transitions have little dependence on the barrier height. Thus, τA ¿ T
and so switching occurs much more rapidly than the period of driving. The particle

8i.e. too weak to cause transitions between potential wells in the absence of noise.
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Figure 1.2: Forced and stochastic motion in a bi–stable well: (a) stochastic motion, the

particle executes a random walk about one of the minima, (b) stochastic and periodic forcing

combine, causing noise–assisted switching.

oscillates wildly between minima and with a trajectory that has little coherence with

the forcing.

• Moderate noise results in behaviour intermediate to these two regimes and so the

assisted switching can become strongly correlated with the biasing. In fact, for a given

driving frequency Ω, there is an optimal noise strength Dopt for which the transition

rate is maximally correlated with the periodic driving. Below Dopt transitions occur

less frequently, and above Dopt the system is too noisy and transitions occur at random.

The description of this effect as stochastic resonance implies that there is some matching of

time–scales. Benzi et al. [BPSV82] coined the name SR, and justified it by noting that the

maximal correlation between noisy–switching and driving occurs when the mean waiting
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time between two noise–induced transitions is comparable with half of the period, T , of the

biasing. Thus yielding the time–scale matching condition for stochastic resonance

τA =
1
2
T (1.46)

1.5.1 A bona–fide resonance

It is easy to visualize this co–operation between noise and signal; what is often more prob-

lematic is a quantification of this effect. The original study by Benzi et al. [BPSV82] first

observed SR as corresponding to a peak in the power spectra of switch times. McNamara

and Wiesenfeld [MW89] shifted the focus of investigation and predicted that SR would

appear as a maximum in a plot of the output signal-to-noise ratio (SNR) versus the noise

strength. Methods for SNR computation are still under contention9, but a general tech-

nique [MW89] is to compute the power spectrum of the output signal (the barrier crossing

rate) and divide it by the power spectrum of the noise signal. For the bi–stable system

(1.44) the output power spectrum typically comprises a narrow peak, located at the driving

frequency and riding upon a broad–band Lorentzian background. The SNR may therefore

be computed by dividing the height of the peak by the height of the Lorentzian background

at the same frequency. This measure is now widely considered to be the true signature of

stochastic resonance, and has direct application in the signal processing analysis of devices

such as SQUIDS [BJS90]. In fact, Heneghan et al. [HCC+96] have shown the equivalence

between this quantity and one that optimizes the Shannon information transfer rate (trans–

information) of a memory–less channel.

To characterize SR in a system, it must be examined over a long time. Spectral computation

can therefore be awkward for SR studies, since it will involve Fourier transforming large

arrays. Furthermore, even though the SNR does depend non–monotonically upon the noise

strength, the noise intensity DSNR for maximal SNR does not coincide with the optimal

noise Dopt for time–scale matching (1.46) (see e.g. [GHJM98] and references therein). Thus,

SNR measures are erroneous when considering entrainment and phase–locking effects, and
9A debate which, to quote Ronald Fox, has “generated much heat but little light”.
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furthermore the lack of time–scale matching makes the name ‘resonance’ inappropriate.

For periodically–driven bistable systems an alternative, and visually more compelling, SR

measure depends upon the histogram of barrier crossing times [ZMJ90] in which a sequence

of residence times of one of the minima is recorded, binned and histogrammed. Depending

on the noise level, such a residence time histogram (RTH) typically consists of several narrow

peaks super–imposed upon an exponentially decaying envelope (figure 1.3). Each peak is

centred at an half–odd–integer multiple of the driving period, such that the jth peak is

located at a time

Tj =
(

j − 1
2

)
T , j ∈ Z (1.47)

To measure the area, or “strength”, of a peak introduce the quantity [GMS95]

Pn =
∫ Tn+aT

Tn−aT
H(t)dt (1.48)

where10 a = 1
3 and H(t) is the normalized distribution of transition times. With increasing

noise, Pn for the nth harmonic peak first rises and then falls, reaching a maximum at some

critical value of the noise. For high noise levels a new peak close to the origin is observed

(figure 1.3d), representing transitions that are caused solely by noise, and that have no

correlation with the driving. The harmonic peaks do not reach their maxima simultaneously,

but instead each has a unique critical noise. Recall the relation (1.46): resonance takes place

when the driving frequency “matches” the mean transition rate due to noise of the un–forced

system. In [GMS95] it was suggested that this would occur when the first (harmonic) peak

is maximal. This is because, at this time, very few transitions occur at the sub–harmonics

and so this peak dominates the histogram. Under these conditions, the mean first passage

time, which is equal to the first moment of the histogram, is close to the driving period.

This measure therefore recovers the original interpretation of SR as being a true resonance

phenomenon.
10In fact, the systems considered by this thesis generally have strongly defined peaks with low–background

distributions, and so the actual value of the parameter a is immaterial.
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Figure 1.3: Residence time histograms (RTH) for a particle subject to both stochastic and

periodic forcing and moving in a bi–stable potential. Various noise levels are shown, with

D1 < D2 < D3 < D4 and D3 ≈ Dopt.

Note also that each peak strength Pn is a function of both the noise and of the driving

frequency, and further from (1.46) that each driving frequency Ω has a different critical–

value of the noise. Thus, each Pn goes through a maximum as either the noise intensity or

the frequency is increased.

An analytical connection between the RTH measure and the SNR one has yet to be proven,

and may not even exist [CFJ98]. However it would appear that if a system exhibits SR

according to the RTH measure, then it will also exhibit a non–monotonic SNR. Choi et al.

[CFJ98] have recently criticized the use of residence time histograms. Their argument is that



1.5. STOCHASTIC RESONANCE 22

in the limit of vanishingly small amplitude driving (i.e. A → 0), the quantities Pn (equation

(1.48)) will still go through a maximum as a function of the noise, even though the system

does not display a multi–modal residence–time histogram. This is of course correct, since

in the absence of periodic forcing the histogram of residence times is essentially a decaying

exponential (such a histogram should be contrasted with the ones shown in figure 1.3). If

one now determines the variation with noise of the histogram height at any arbitrary point

(e.g. at a time equal to a period of the forced case), one does see the height pass through

a maximum. However, this occurs at much lower noise levels (i.e. there is no matching of

time-scales) and is simply an artefact of the sampling. However, such vanishingly small

amplitude driving rarely has relevance in the real world and so I take the pragmatic view

that Gammaitoni’s measure is only pertinent to periodically–driven systems and should only

be used to quantify those that display discernible, multi–modal residence time histograms.

1.5.2 The inter–spike interval histogram

A technique, resembling the RTH, for analysing neural spike data is the inter–spike interval

histogram (ISIH), which is a histogram of the time intervals between successive spikes. An

important distinction between these two measures is that the RTH is a histogram of times

for a single escape from a well, i.e. it is an ensemble measure, while the ISIH is a histogram

of a series of “switching” times of a single neuron/oscillator (i.e. it is a renewal process).

Thus the residence time histogram exhibits peaks centred at half–odd integer multiples of

the driving frequency, while the ISIH will shows peaks centred at integer multiples of the

driving frequency (recall equation (1.47)).

1.5.3 Biological SR

What is the relevance of SR to biological and neural systems? There is now growing

neuro–physiological evidence that noise might aid the transduction of small sub–threshold

signals by various sensory neurons. Furthermore, the efficacy of these neurons appears to

exhibit a non-monotonic dependence on the noise strength. SR-type effects have recently

been indicated in: the cricket cercal system [LM96], human tactile sensation [CIG96], hair
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mechano–receptors in the tail fan of the crayfish [DWPM93], and mammalian cold receptors

(see chapter 3). At the network level, the application of an electric field containing both a

periodic and a noise component has been shown to pacify a (chemically induced) epileptic

seizure in an in vitro hippocampal slice [GNN+96]. It has also been suggested that SR

could feature at higher levels of brain function such as in the perceptual interpretation of

ambiguous figures (see chapter 4). Good descriptions of many of these experiments may be

found in the review articles [Mos94, MPO94, WM95, WJ98].



Chapter 2
The origins of neuronal noise

“Our science has always desired to monitor, measure, abstract, and castrate

meaning, forgetting that life is full of noise and that death alone is silent: work

noise, noise of man, and noise of beast. Noise bought, sold, or prohibited.

Nothing essential happens in the absence of noise.” [Att85]

Neuronal noise is difficult both to categorize and measure. However, it is an important

facet of the behaviour of biological neurons that is frequently neglected in theoretical and

modeling studies. As a prelude to a discussion of its origins, I wish to give a short description

of neuronal structure and function.

2.1 Neuronal structure and function

2.1.1 Cellular physiology

Neurons are eukaryotes. They contain a cell nucleus and cytoplasmic organelles, and are

enclosed by a thin (< 10 nm) double layer (bi–layer) of phospho–lipid molecules. The most

important of the organelles are mitochondria, which are found throughout the neuron. These

small, cigar–shaped structures convert the glucose and oxygen delivered by the bloodstream

24
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into ATP, which is then used as a store of energy. The lipid bi–layer’s function is twofold: it

prevents the cell’s contents mixing with extra–cellular material, and it acts as an (imperfect)

electrical insulator.

2.1.2 Electro–physiology

Neuronal cytoplasm consists mostly of water, proteins and inorganic salts such as Na+, K+,

Cl− and Ca2+. When the cell is at rest, the intra–cellular and extra–cellular fluids differ

in both ionic composition and concentration. In consequence there is a charge imbalance,

and hence a potential difference, across the membrane. Neuronal operation is effected by

the manipulation of this potential difference by the controlled movement of ions across the

lipid membrane. Glyco–protein macro–molecules are scattered throughout, and protrude

through, the membrane. These macro–molecules function either as sites for the reception of

specific chemical messengers, or they facilitate trans–membrane ionic currents. Such ionic

currents are either due to diffusion through a channel and along a chemical gradient, or

to enzymes, known as active pumps, which metabolize ATP to move ions against their

concentration gradient.

Diffusive ionic transport through a channel is a passive process, and the current through a

single channel can involve the transmission of up to 108 ions per second [KSJ91]. Channels

are typically highly selective to a single ionic type, and may be sub–classified into non–gated

and gated channels. Non–gated channels are water–filled pores which allow a continual

ionic flux. The rate of flux depends on the concentration gradient, and these channels are

responsible for maintaining the resting potential. Gated channels are allosteric proteins

that have (at least) two stable conformal states, open and closed, and are modulated by

certain stimuli. Voltage–gated channels are sensitive to the electrical potential across the

membrane, while chemically–gated channels respond to the presence of certain chemical

messengers. Recordings of the current flowing through a single channel indicate that gated

channels can fluctuate rapidly between open and closed states.

Channels allow ions to flow along concentration gradients, and the resulting chemical equi-
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librium dissipates the trans–membrane potential difference. To restore it, ions must be

pumped against their concentration gradients to balance the passive flux. Such active

transport requires energy, which is provided by the hydrolysis of ATP. There are many

different enzyme pumps, but the sodium–potassium pump, Na+–K+ ATPase, is ubiquitous

and accounts for a third of all energy consumed by each neuron. Its function is to restore

the intra– and extra–cellular concentrations of sodium and potassium. Na+–K+ ATPase is

preferentially biased with a stoichiometric ratio 3:2, extruding more sodium from the cell

than is replaced by potassium.

When the cell is at rest it exhibits a trans–membrane potential, the resting potential, in the

range -40mV to -90mV. If the cell’s potential becomes less negative, the cell is said to be

depolarized; if it becomes more negative, the cell is hyper–polarized. Recall that the origin of

the resting potential is a disparity between the intra– and extra–cellular fluids. Each ionic

species is subject to two pressures controlling its passage through the membrane: an electric

one due to charge build up, and an osmotic one which tends to equalize chemical concen-

trations. In the resting state, the Na+–K+ ATPase pump maintains high concentrations

of intra–cellular potassium and extra–cellular sodium. Even though the lipid membrane

at rest is permeable to K+ ions, an electrical gradient opposes their efflux and subsequent

chemical equilibration. The resulting potassium distribution therefore derives from a bal-

ance between the osmotic and electric forces. Similarly, the membrane is permeable to

Cl− ions but a chloride influx is opposed by the electric gradient and so the extra–cellular

concentration high. In contrast, there is a high extra–cellular concentration of sodium since

it is continually pumped out of the cell, and therefore both the chemical and the electric

gradients favour a Na+ influx. However, when the neuron is at rest, the lipid membrane is

impermeable to Na+ and thus its distribution is maintained.

2.1.3 Cytology

A neuron may be partitioned both functionally and morphologically into four sections: the

soma, the dendrites, the axon and the pre–synaptic terminals.
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• The soma is the metabolic centre of the cell. It is typically pyramidal in shape and

contains the cell nucleus and hence the cell’s genetic material. The primary function of

the soma is protein synthesis. There are usually two distinct structures which extend

from the soma: the dendrites and the axon.

• The dendrites are an arborised structure which extend the receptive surface of

the cell. They generally receive input from other neurons, and are considered to

be the information gathering region of the cell. Inter–neuron communication occurs

at specialized junctions called synapses, and can be either chemically or electrically

promoted. Chemical synapses employ the release of transmitter substances by the

signalling cell to cause the transient opening of gated channels on the dendrites of the

receptive cell. In contrast, electrical synapses are non–gated channels of low electrical

resistance through the cell membrane. The resulting ionic flux through the dendrites

is summed in the soma, and the net change in the ionic composition of the cytoplasm

determines the neuron’s response to its input. The role of the dendrites in information

processing and computation has been extensively reviewed in [Mel94, BC97].

Dendritic morphology differs greatly between cell types, and defies general classifica-

tion. Shepherd [She94] therefore defines dendrites as,

“... all those branches which do not fulfill the criteria of being an axon”.

• The axon is a thin, tubular structure which projects from a specialized region of the

soma called the axon hillock. Axonal lengths vary between several micrometres and

a metre, and diameters vary between one micrometre and one millimetre. The axon

has a dual function: chemical transport from the soma to the pre–synaptic terminals,

and the propagation of information to other neurons. Information is communicated

by means of an action potential (AP), or ‘spike’.1 An AP is a brief stereotypical

electrical impulse which travels with a constant velocity along the axon, away from

the soma and toward the pre–synaptic terminals. At its distal end the axon divides

into fine branches, called telodendria.

• The pre–synaptic terminals, or boutons, are specialized swellings that occur on
1In this thesis I will use the terms ‘action potential’, ‘AP’ and ‘spike’ interchangeably.
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the axonal telodendria. They are the transmitting elements of the neuron, and are

used to disseminate information about the neuron’s activity to the receptor surface of

other neurons. The point of contact is known as the synapse, and a neuron can have

more than one synapse with another neuron. The pre–synaptic terminals of chemical

synapses contain small, spherical membranes, called vesicles. Each vesicle contains

a small amount (≈ 5000 molecules) of chemical transmitter, and is anchored to a

cytoskeletal matrix called the vesicular grid.

2.1.4 Chemical messengers and synaptic transmission

The synapse is the point of functional contact between the axon terminals of one neuron and

the dendrites of another. The two neurons do not make physical contact, but are separated

by a fluid filled gap of about 20nm, called the synaptic cleft.
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Figure 2.1: Synaptic function: an incident AP causes vesicular release into the synaptic

bouton. The vesicles subsequently fuse to the pre–synaptic membrane and spill neurotrans-

mitter into the synaptic cleft. Transmitter molecules bind to receptors on the post–synaptic

membrane, and open chemically gated ion channels (see text).
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When an incident axon potential invades the pre–synaptic terminal it activates voltage–

gated Ca2+ channels, thus allowing calcium entry. The transient Ca2+ influx triggers vesicle

release from the grid, and subsequently causes them to fuse to the pre–synaptic membrane.

The neurotransmitter contained within each vesicle is spilt into the synaptic cleft and dif-

fuses toward the post–synaptic membrane. At the post–synaptic membrane the transmitter

binds to receptor molecules, and opens chemically–gated ion channels. The resulting ingress

of charge into the dendrites is termed a post–synaptic potential (PSP). If the ionic inflow is

positively charged (e.g. Na+) the PSP depolarized the membrane and is termed excitatory;

if it is negative (e.g. Cl−) then the membrane becomes hyper–polarized and the PSP is

inhibitory.

Transmitter release is therefore quantal. In lower animals a single action potential will

typically release 103 – 104 vesicles. However, for neurons in the mammalian central nervous

system this drops to 1 – 10 vesicles per AP [KF87].

Vesicles are regenerated in the pre–synaptic terminals by a process called endocytosis

[KSJ91].

2.1.5 Action potential generation

The excitatory and inhibitory PSP’s all diffuse via the dendrites to the soma, where they

are non–linearly combined. If there is an excess of positive charge then the soma becomes

depolarized and charge builds up at a region close to the axon hillock, called the trigger

zone. The membrane of this initial axonal segment contains many voltage–gated Na+

channels. If the total charge at the trigger zone exceeds a threshold (usually in the region

of -40mV) then these sodium channels open to allow a large Na+ inflow along the chemical

gradient. The inter–cellular sodium concentration increases until the osmotic and electric

forces balance, which occurs at about +50mV. At this point the sodium channels become

inactive. Since the membrane potential is now positive, there is an inward flow of Cl− and

an outward one of K+. This resets the trans–membrane potential to its resting value. The

intra– and extra– cellular cytoplasm are now returned to their original compositions by the
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Figure 2.2: An incident pre–synaptic action potential causes an excitatory PSP. The PSP

diffuses to the soma, and charge builds up at the trigger zone. The membrane becomes

depolarized, and if the threshold is exceeded, an action potential is generated. The AP

propagates along the axon, away from the soma.

sodium–potassium pump. Resetting of the membrane potential is not instantaneous but

has a finite time course.

This brief excitation is the action potential. Propagation of the AP is achieved by the

diffusion of the initial sodium influx to the neighbouring axonal membrane. This portion

of membrane now becomes super–threshold, thus its Na+ channels open – and the process

repeats.

Following spike generation, there is a short time (3 – 4ms) during which the neuron is

unable to initiate a further action potential [KSJ91]. This is the absolute refractory period
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(ARP), and it is a consequence of the residual in–activation of the Na+ channels and opening

of the K+ channels. However, if the membrane remains depolarized beyond this refractory

period, a second spike may ensue. The ARP therefore places an upper bound on the spiking

frequency.

If instead the initial PSP summation is sub–threshold, Na+–K+ ATPase and the non–gated

channels slowly return the soma to its resting state without the generation of an action

potential.

The Hodgkin–Huxley equations

Hodgkin and Huxley’s [HH52] model of spike generation in the giant–squid axon captures

well the biophysics of current flow at the trigger zone. The starting point for its derivation

is the conservation of electrical charge

C
d
dt

V = −F + I (2.1)

where C is the capacitance, F the membrane current, and I any external or synaptic current

entering the cell. The membrane current depends upon V and upon three conductances:

gL, gNa and gK

F(V, gL, gNa, gK) = gL(V − VL) + gNa(V − VNa) + gK(V − VK) (2.2)

where VL, VNa and VK are the leakage, the sodium and the potassium reversal potentials

respectively. The passive leakage conductance gL is independent of both time and voltage,

however the active sodium and potassium conductances, gNa and gK, are given by

gNa = ḠNamNa(t)3hNa(t) and gK = ḠKnK(t)4 (2.3)
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where ḠNa and ḠK are the maximal channel conductances. The conductance variables,

mNa, hNa and n obey

d
dt

mNa =
m∞(V )−mNa

τm(V )
d
dt

hNa =
h∞(V )− hNa

τh(V )
d
dt

nK =
n∞(V )− nK

τn(V )
(2.4)

with mNa, hNa, nK ∈ [0, 1], and the asymptotic values, m∞(V ), h∞(V ), n∞(V ) depend sig-

moidally upon the voltage. The τm, τn and τh are time constants, with τm ¿ τh, τn. All of

the reversal potentials, the maximal conductances, the conductance variables and the time

constants, were experimentally obtained from patch–clamp measurements on the giant squid

axon.

Integration of the Hodgkin–Huxley equations shows that for zero input current (I = 0) the

neuron remains at its resting–potential (Vrest ≈ −40 mV). An action potential is generated

when a large enough current is applied: the cell rapidly depolarizes to +50mV, before

slowly returning to Vrest. The fast upstroke is caused by the rapid increase of mNa (inward

Na+), its rise is halted by the slower hNa (Na+ inactivation) and nK (outward K+). Hyper–

polarization is due to the increase of nK. During the recovery, hNa and nK reset to their

asymptotes.

2.2 Neuronal noise

Stochastic neural activity is apparent at all levels of recording: from single ion channels to

spike trains [Hol76]2. Some of this randomness is no doubt due to noisy input, either as

signals from other neurons (e.g. [GM64, Ric95]) or as direct sensory input (e.g. [DWPM93,

LM96]). However, there is a large component which derives internally to the cell.
2The presence of chaos in neural systems has also been indicated by many theoretical studies, and is

supported by the neuro–physiological evidence. For a discussion, and also techniques for distinguishing

between noise and chaos, see e.g. [Gla95], and also the discussion at the end of chapter 3
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2.2.1 Aleatory synaptic function

In vitro recordings from neuro–muscular synaptic junctions shows the continuous and spon-

taneous generation of small (about 0.5mV) post–synaptic potentials. These miniature PSP’s

(termed miniature end–plate–potentials, mepps) are evoked at a mean rate of about 1Hz,

even in the absence of stimulation [Kat66]. Single mepps are generally too small to cause

the post–synaptic neuron to spike, but otherwise, apart from their size, they are indistin-

guishable from those triggered by an afferent action potential. mepp magnitudes suggest

that each one is caused by transmitter release from a single vesicle, and therefore discharge

in the pre–synaptic bouton has a stochastic component. The inter–mepp histogram is fitted

well by an exponential, implying that random vesicle release is Poisson distributed. This

further suggests that vesicles are released independently of each other, and with constant

probability. Similar spontaneous discharge has been observed in other preparations [KSJ91].

Vesicular release probability depends strongly on the membrane potential of the pre–

synaptic terminal, rapidly increasing with bouton depolarization [Hol76]. Consequently,

vesicular discharge by an afferent action potential is also Poisson distributed, but with a

much higher release probability than when the cell is at rest. Typically, the release probabil-

ity due to an action potential is p ≈ 0.6 [Per92]. Therefore, if there are n vesicles available

for release, the mean transmitter released by an afferent spike will be m = pn vesicles.

Measurement of m-PSP amplitudes demonstrates that vesicle size is not fixed, but is Nor-

mally distributed with a wide variance [HLQ69]. Furthermore, the mean and variance of

this distribution is common to all synapses.

2.2.2 Fluctuations of the membrane potential

The interplay between neurotransmitter molecules, receptors, channels, and ions may only

be described statistically due to the large numbers concerned. Several spectral densities

arise:
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• Johnson–Nyquist noise. Fatt and Katz [FK50, FK52] estimated the thermally

induced voltage fluctuations in the membrane potential. Such fluctuations are anal-

ogous to the Johnson–Nyquist (JN) noise observed in electronic components. For an

RC circuit of resistance R and capacitance C, JN noise has a band–limited Gaussian

distribution3, with mean 4kTR and variance kT/C [DeF81], where k is the Boltzmann

constant and T the absolute temperature. It therefore has a power spectral density

(PSD):

S(f) = C (2.5)

with C constant.

• Shot noise. Although current flow through a channel involves many ions, the tran-

sition probability of a single ion is low and is Poisson distributed. Channels are

relatively sparse over the membrane and so ion movement through them is likely to

be independent. Furthermore, the transit time for each ion will be similar for all ions,

and therefore so too will be the current carried by a single ion. The current flow

through the ion channel will therefore have the form

Is(t) =
∑
tk

G(t− tk) (2.6)

where tk represents the time of passage of the kth ion which contributes G(t− tk) to

the total current Is(t). The spectral density of the current will therefore be that of

shot noise [Ric54, Hol76], and its precise form will depend on the function G(t).

• Excess noise. The low frequency r.m.s. noise level of a non–equilibrium system is

often greater than can be accounted for by either JN or shot noise [Hol76]. Empirically,

such noise often has a spectral density which varies as

S(f) =
B
f ς

(2.7)

3A signal is said to be band limited if its Fourier transform vanishes outside of some finite interval.

Quantum corrections to Nyquist’s derivation of the spectrum mean that JN noise is only flat up to 7 x 1013Hz

[Gar85].
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where B is some constant which depends on the experiment, and the exponent ς is

close to 1. Such excess noise is named flicker– or 1/f noise. Its origins are poorly

understood, but Verveen et al. [VD68] have shown that the intensity of the 1/f spec-

trum is related to passive K+ flux, but is unaffected by either sodium transport or

metabolic processes. Lundström et al. [LM74] therefore suggest that it may be a

consequence of current modulation due to the vibrational modes of the glyco–protein

channels.

• Current noise. The number of receptors activated by the presence of neurotransmit-

ter in the synaptic cleft is not constant, but instead rapidly fluctuates as transmitter

molecules collide with receptor sites [KM72]. The resulting current flow through the

membrane is therefore noisy, with statistics that reflect the gating fluctuations. Recall

that the arrival of a single transmitter molecule at a receptor site on the post–synaptic

membrane causes the channel to open. If the activation probability of a channel is

pa, and its inactivation probability is (1 − pa), then the population statistics of N

channels are binomially distributed with mean Npa and variance Npa(1 − pa). The

power spectral density of these fluctuations therefore follow a Lorentz distribution

[DeF81, Hol76] with a time constant τ , i.e.

S(f) =
τE2

1 + f2τ2
(2.8)

where the parameters τ and E are empirically determined, and τ is a relaxation time

[LN71a].

2.2.3 Randomness in spike generation

If a low intensity stimulus is applied to a neuron, no response occurs; if a high intensity one

is used, the cell will spike. Intermediate to these two regimes is a range of stimuli for which

firing is probabilistic. Verveen [Ver61, DeF81] repeatedly applied a constant stimulus to a

frog nerve preparation, and measured the neuron’s response. To avoid habituation, stimuli

were applied at two second intervals. It was found (figure 2.3) that the firing probability

varies monotonically between 0 and 1 over a range of stimuli, and further that the firing
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probability is approximately Gaussian. Pecher [Pec39] compared the firing variance of two

fibres taken from the same preparation to show that these fluctuations derive internally to

the neuron and have no external origin.

firing

probability

1.0

0.5

0.0

spike trains

% stimulus intensity10099 101

Figure 2.3: (left) Action potentials from a frog nerve in response to a repeated constant

stimulus. Proceeding from top to bottom represents a reduction in stimulus intensity. (right)

Firing probability for a given stimulus intensity. Stimulus strength is normalized about the

threshold stimulus: threshold is defined as that stimulus for which the neuron fires on average

once out of every two trials. (After [Ver61]).

Since such probabilistic firing effectively corresponds to a stochastic threshold, it is referred

to as threshold noise.

Lecar and Nossal [LN71b] have studied threshold noise in a simplified Hodgkin–Huxley

model, due to FitzHugh [Fit61]. FitzHugh noted that V and mNa vary more rapidly (by

an order of magnitude) than do hNa and nK, and further that the main properties of the

Hodgkin–Huxley model could be reproduced by setting hNa and nK equal to their resting

values, i.e. hNa = h∞ and nK = n∞, so that

C
d
dt

V = −gL(V − VL)− ḠKn4
∞(V − VK)− ḠNamNa(t)3h∞(V − VNa) + I

d
dt

mNa =
m∞(V )−mNa

τm(V )
(2.9)
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In the absence of noise, FitzHugh’s reduced equations exhibit three fixed points: two stable

and one saddle–point, as shown in the phase–plane in figure 2.4. The stable point at a

represents a resting potential, while that at c is an excited state. If the dynamical equations

are supplemented by a reset condition, then arrival at c represents spike generation. The

saddle–point separatrix therefore divides the phase plane into two basins of attraction:

trajectories with initial points to the left of the separatrix relax to the resting potential,

while those with starting points to the right (ultimately) trigger a spike. The separatrix is

therefore a threshold for spike–generation.

�

�

�

�

�

Figure 2.4: Trajectories in the phase plane for the FitzHugh’s reduced equations. a and c are

stable fixed points, respectively corresponding to a resting potential and to spike generation.

b is a saddle–point and the dotted line represents the separatrix. Trajectories starting to

the left of the separatrix terminate at a, while those starting to the right of the separatrix

terminate at c.

The inclusion of neuronal noise causes V and m to fluctuate, and means that trajectories

must be replaced by probability distributions for the position of the state vector in the

(V,m) plane. More importantly, if the neuron is prepared at an initial point close to the

separatrix, then the noise can propel the state vector over it. Thus, the noise can either

cause the neuron to fire when the corresponding deterministic system would not, or vice

versa: it can be prevented from firing when it otherwise would.

The consequences of this have been examined by the inclusion of additive noise to each
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of equations (2.9). By identifying the probability of firing with the probability of having

crossed the separatrix in the limit t → ∞, Lecar and Nossal [LN71b] derive the general

expression for the firing probability due to threshold noise

P (fire|I) =
1
2

[
1 + erf

(
I − Iθ

SIθ

)]
(2.10)

where I is the stimulating current, Iθ is the threshold current, S measures the spread of

the transition region where the probability of firing varies from 0 to 1. erf() is the error

function, defined by

erf(x) =
2√
π

∫ x

0
exp(−z2)dz (2.11)

In a companion paper, Lecar and Nossal [LN71a] compute S for various sources of membrane

noise (see section 2.2.2) and compare their predictions with the experimental data. They

find that the Verveen’s data is best explained when the sodium channel fluctuations are the

dominant contribution to threshold noise.

2.3 Discussion

In this chapter I have reviewed neuronal operation and have identified several sources of

noise. For neuronal firing dynamics, the most potent of these are synaptic and threshold

noise. In chapter 5 I will further show how these two noise sources affect the behaviour of

a neuron.



Chapter 3
A temperature–dependent cold receptor

model

3.1 Introduction

Bursting is the rhythmic generation of several action potentials during a short time, followed

by a period of inactivity during which the membrane hyper–polarizes. The limiting case of

a single spike per burst is termed beating. There are a wide variety of burst phenomena,

but it appears that many are due to a similar underlying mechanism. First note that the

various chemical and electrical dynamics of the neuron operate on many time-scales, and so

some neurons are amenable to Rinzel and Lee’s [RL87] treatment: their dynamics may be

dissected into a fast system coupled to a slowly oscillating sub–system. Typically the fast

system has a time-scale of milliseconds and models the membrane potential, and hence spike

generation. The slow sub–system operates on a time-scale of tens of seconds and models

trans–membrane ionic currents. The fast system is modulated by the slow one, and has

two parameter regimes: a stationary state or resting potential, and a periodic state during

which action potentials are generated. Thus, for bursting to occur, the slow variable must

parameterize bifurcations in the fast system. Bursting phenomena may be sub–classified

39
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[WR95, Rin87], according to the underlying wave form of the oscillatory component, e.g.

triangular bursting: feline thalamo–cortical relay neurons exhibit brief spike bursts riding

on a slow triangular wave [WR95].

An important class of bursting neurons are the mammalian cold receptor cells. These

cells are free nerve endings [SBR90] that transduce patterns of heat energy into neuronal

signals. They are found sub–cutaneously at every layer of the skin and tongue, but are

relatively sparsely distributed over the skin [Iva90]. As a consequence of their small size,

intra–cellular recordings of the various ionic processes contributing to excitability are not

available. Instead the only quantity that can be measured directly is the spike train, however

other cellular properties may be inferred by the use of pharmacological agents. Temporal

firing patterns and inter–spike interval histograms (ISIH) from these neurons show that the

bursting dynamics is highly temperature–dependent and further imply the existence of a

slowly–oscillating temperature–dependent current that has a frequency that increases with

temperature [BSW90].

In this chapter I present a canonical model for a thermally–dependent cold receptor neuron

with noise, which exhibits bursting, beating and skipping. The model is a simplified version

of an ionic slow wave bursting neuron, and can be obtained from the latter by following

a phase reduction procedure due to Ermentrout and Kopell [EK86]. My goal is to better

understand the paths in parameter space which yield the sequences of discharge patterns

observed in cold receptors. My approach here is a general one, I take the specific example of a

cold–receptor but this phase model also has applicability to other temperature–dependent,

slow-wave bursting neurons such as those discussed in [BSWH84]. The model contains

biologically motivated parameters and exhibits behaviour that is consistent with experiment.

Moreover, it has the advantage of being mathematically tractable so that if these parameters

were to be quantified, analytic predictions about the behaviour of real receptors could be

made.

I analyse the model in the limiting case of zero–noise (the deterministic limit) and also

when subject to a finite amount of thermal noise. For the former I am able to predict

how many action potentials are generated per burst for a given temperature, and I also
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derive the transition temperature from bursting to beating. For the latter I shall show

how to estimate the skipping rate (i.e. the mean number of slow–wave cycles for which the

neuron does not fire) at a given temperature. I demonstrate that skipping is a noise–induced

effect that can occur for both the supra–threshold and the sub–threshold dynamics. Below

threshold, spikes become deleted as a consequence of noise–induced trapping [AGMS94],

while above threshold the firing pattern becomes augmented by noise–induced spiking. I

further show that the phase–locking behaviour of the neuron in these two regimes displays

a non–monotonic dependence on the noise level, consistent with the notions of resonant

trapping and autonomous stochastic resonance [Lon97].

The chapter is organized as follows. Section 3.2 is a brief review of cold receptor physiology,

a subject covered more completely in [LH96]. The model is introduced in section 3.3. In

section 3.4 I first consider the limiting case of zero noise and analyse the simulated firing

patterns via Floquet theory, I then examine how noise can alter the deterministic discharge

pattern. In section 3.5 I consider how changing the level of noise can lead to resonant

trapping and stochastic resonance in this phase model.

3.2 A summary of the neuro–physiology of cold receptors

Figure 3.1 shows characteristic discharge patterns at various static temperatures from re-

ceptors in the cat tongue. Not every cell has this repertoire of discharge, some exhibit only

a few of these patterns when the temperature is varied. Furthermore the temperature at

which a given discharge pattern occurs varies between receptors. Although it is unclear as

to the extent to which the nervous system utilizes the temporal structure of such regular

discharge, it is known [Lis97] that bursts are an efficient way to drive certain higher neu-

rons. This is because, during a burst, the relatively high firing rates release higher levels of

transmitter than would be the case if the individual spikes were more broadly distributed

in time.

At low temperatures the neuron bursts repetitively with a uniform burst length and with

bursts that are synchronized to the slow oscillation. However the timing of individual spikes
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Figure 3.1: Characteristic discharge patterns of bursting cold receptors of the cat lingual

nerve at various constant temperatures. Left diagrams: interval distribution; right diagrams,

impulse activity. The mean discharge rates (in s−1) are 5.4 (40o C); 7.2, (35o C); 9.2, (30o

C); 10.4 (25o C); 12.0 (20o C); 11.0 (15o C). Intervals shorter than 100 ms are intra–burst

intervals. Reproduced from figure (1) of [SBR88] and methods are described in references

therein, (reproduced with permission).

within the burst is non–uniform [BBH80], a feature shared with parabolic bursting neurons

[RL87]1. When the temperature is quasi–statically increased, the burst length and inter–
1A burst is termed parabolic if the spiking frequency is lower at both the beginning and the end of the

burst compared with that during the middle of the burst.
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burst period both diminish, until at the middle of its operating range the neuron emits a

regular spike train with phase–locked spikes.

If the temperature is increased still further, the spike train becomes aperiodic so that

occasional double spikes appear and skipping occurs: the spike train is still synchronized to

some underlying rhythm, but between spikes a random integer number of oscillation cycles

may be skipped [BSW90]. The origin of this randomness is uncertain. However, due to

the cell’s lack of synapses and its small size, it is thought that thermal and conductance

fluctuations might be important. The skipping rate is also thermally–dependent, increasing

with temperature, and above 40oC skips of up to eight cycles have been observed [SBR88].

Static temperature is therefore unambiguously encoded by both the discharge pattern and

the oscillation period of the slow wave and not by a rudimentary firing rate code.

Cold receptors also exhibit a dynamic response to rapid (i.e. non–quasistatic) temperature

changes [BBH80]. Figure 3.2 clearly shows this dynamic response when a cold receptor

is exposed to cooling steps of 5oC. There is a rapid transient increase of the slow–wave

frequency, which then slowly relaxes to the new steady state (i.e. to a frequency that is

lower than the original one). As previously noted, the number of spikes–per–burst (SB)

increases with a quasi–static temperature reduction. However, for a rapid temperature

change SB overshoots the new steady–state value before slowly relaxing to it. Thus, there

is a transient period during which the cell emits longer, and more frequent, bursts than

would be dictated by the steady–state conditions. The frequency of spikes within a burst

remains approximately constant. It further appears that there are two time–scales for

this transient behaviour, with the SB–transient evolving more slowly than the frequency

transient.

I wish to introduce some nomenclature for describing the discharge pattern. The number of

action potentials in a given burst (i.e. SB) is N , and the mean number of spikes per burst,

N is the temporal average of N . Ω is the frequency of the slow oscillatory cycle, and is

the reciprocal of the sum of the inter– and intra– burst durations. A single receptor at a

fixed temperature does not always generate a constant number of spikes during every burst,

but can instead vary by one or two spikes [BBH80]. The occurrence of additional spikes is
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Figure 3.2: Temperature response characteristic of a peripheral cold receptor of the cat

skin during reduced extra–cellular calcium concentration (0.5 mM, control 1.5 mM) which

enhances the rhythmicity of the impulse activity. Impulse activity was recorded during tem-

perature changes from 35oC to 10oC in steps of 5oC as indicated in the lowest trace (T).

The discharge frequency (F) is shown in the trace above by means of a conventional peri–

stimulus–time histogram (bin width: 1s). The interval duration plot in the upper trace

shows the corresponding distributions of the interspike–intervals (comprises about 11,000

intervals). Each dot represent a single interspike–interval. Note that temperature changes

are abrupt rather than quasi–static, and so the cell exhibits transient behaviour. Further-

more, observe the abrupt transition to skipping (shown in the upper trace) which suggests

the presence of a phase–transition (or bifurcation) in the cell’s dynamics. (Reproduced from

[BHD+98] with permission)
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statistically distributed, suggesting that a degree of stochasticity is present in the dynam-

ics, however one cannot exclude the possibility of chaotic bursting [LH96]. The breadth

of the ISIH peaks indicates that at a fixed temperature, the slow–wave frequency Ω(T ) in

fact fluctuates weakly but with a mean that is determined only by T and is independent

of the spike number variability. Examination of the spike trains of several cells at differ-

ent static temperatures reveals [BSWH84] that both Ω and N depend monotonically (and

sometimes approximately linearly [BBH80]) upon the temperature T , with Ω increasing and

N decreasing with T .

The thermo–sensitivity and regular discharge of cold–receptors has been likened to that

of Aplysia2 R15 neurons. In normal sea–water the Aplysia R15 cells exhibit an irregular

endogenous bursting discharge caused by interactions between an internal pacemaker and

synaptic inputs from other cells [AB85]. This discharge may be made periodic by perfus-

ing with an artificial sea–water solution containing increased Mg2+ or low Ca2+ to block

neurotransmitter release [WC82]. Under these conditions the activity of the cell depends

only upon its pacemaker mechanisms. Even though the Aplysia organism does not thermo–

regulate, the discharge from these pacemaker cells displays a temperature–dependence sim-

ilar to that of mammalian cold receptors. It is thought that the bursting patterns and

thermo–sensitivity of both cold receptors and of Aplysia R15 neurons derive from similar

mechanisms, and so it has been proposed [WGC74, WC82] that these pacemaker cells could

serve to model thermo–receptors. Studies of R15 neurons proved insightful for the under-

standing of slow wave bursting since it is possible to record intra–cellularly. In particular,

the blocking agent TTX has been shown to prevent action potential generation while still

leaving the slow–wave relatively intact. (The rhythmic behaviour of Aplysia is well reviewed

in [AB85] and more recently in [CCB91].)

The effect of temperature on Aplysia R15 cells has been investigated [Car67]. The firing

threshold was found to remain constant, but the membrane resting potential was observed

to become more negative with increasing temperature, decreasing by 1.5mV for each degree
2Aplysia Californica: a large marine snail also known as the sea hare, see [Kan89] for a review of Aplysia

neuro–physiology.
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warmed. Further investigation [CA68] has shown that the cause of the change in resting

potential is a biasing of the Na+–K+ pump with temperature. Such a biased pump is

termed an electrogenic pump, and its overall effect is the generation of a constant current

across the membrane. As temperature increases the pump becomes preferentially active

toward sodium, extracting more Na+ than is replaced by K+, and making the membrane

potential more negative. The presence of an Na+–K+ pump in the cold receptor has been

confirmed [SB90] by application of ouabain, a poison that blocks the pump’s activity and

so prevents the cell’s return to its normal stable state. It was found that ouabain initially

induces a short vigorous increase in cellular discharge, followed by a permanent cessation

of activity. During the initial period Ω accelerates and N increases to peak values, and

these peak values increase monotonically with temperature. Inhibition of the electrogenic

Na+–K+ pump causes a depolarizing imbalance of the membrane potential since positive

charge is not removed from the cell, and it is therefore thought that Ω is controlled by both

temperature and by the membrane potential.

The physiology of the cold receptor slow oscillation mechanism is uncertain, however it is

thought [GHT82] that the Aplysia pacemaker involves two coupled slow trans–membrane

currents. A slow inward voltage–dependent calcium current and an outward Ca2+ dependent

potassium current which activates at an intermediate rate. The inward current is thought

to be conveyed by a transient (T) [TLM+88] calcium channel, and the importance of T–

channels in cold receptor oscillation has been investigated by Schäfer et al. [SBH82, SBR88].

In general T–channels activate (open) at low thresholds, in the range -70mV to 0mV, and

become completely inactivated (closed) by a voltage–dependent inactivation gate as the

voltage increases beyond -60mV. During the first part of the cycle Ca2+ accumulates in

the cell and depolarizes the membrane. The depolarization inactivates the T–channel but

the accumulation activates outward K+ channels. When the outward current exceeds the

inward, the membrane potential becomes more negative, initializing the hyper–polarizing

part of the cycle. The amassed Ca2+ is now sequestered by another ATP driven pump.

This in turn inactivates the outward K+ current and begins to depolarize the membrane

again, reactivating the T–channels. In Aplysia the overall amplitude of the oscillation is

of the order of 15mV. At low temperatures the calcium T–current is blocked [WW74],
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weakly reducing the oscillation amplitude. As a consequence of the reduced Ca2+ influx,

the outward K+ channel becomes activated more slowly, increasing the total oscillation

period.

Skipping occurs in other preparations in which there is no apparent periodic stimulation.

For example, a related thermo–responsive preparation is the ampullae of Lorenzini of the

dogfish. These mandibular sensory afferents are used for prey detection, and are primarily

electro–responsive but also respond to thermal stimuli. They exhibit a similar temperature–

dependent slow wave, but although skipping occurs they do not burst in the same manner.

They are much larger than cold–receptors and so are a simpler preparation to study. Recent

data [BWSH94] suggests that their skipping is a consequence of noise internal to the neuron,

and a similar mechanism has been suggested to operate in the cold–receptor [BBH80]. An

electrical stimulus has no effect on the oscillatory period of the ampullae, but instead

determines the skipping rate: a positive electric field increases the skipping probability,

while a negative field reduces it. It has been suggested [BWSH94] that the oscillatory

wave periodically brings the neuron close to its threshold for firing, but that actual action

potentials are caused by inherent noise pushing the membrane potential over the threshold.

Such a mechanism should be compared with that of stochastic resonance (recall section

1.5). The effect of an imposed field is to shift the baseline of the oscillation, so that the

neuron becomes biased toward (negative field) or away (positive field) from the threshold,

thus altering the firing probability. In this manner a single neuron is able to encode two

sensory modes: a thermal one and an electrical one.

Aplysia R15 evidence further suggests the origin of the transient N̄–overshoot during rapid

temperature changes. It is known that the Na+–K+ pump responds much more quickly to

temperature changes than do the passive ion channels [WC82]. Therefore, before equilibra-

tion, the resting potential temporarily becomes much more positive and so more spikes can

be fired during a burst.

In summary, a cold–receptor model based on the Aplysia data has a high resting potential at

low temperatures, and so the slow wave causes depolarization for a large part of the cycle.

The neuron therefore bursts. As the temperature increases, so too does the oscillation
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frequency of the slow wave. In addition the resting potential becomes more negative and

so the depolarization time due to the slow wave, and hence the burst length, is reduced.

At high temperatures, the slow wave is no longer able to generate spikes by depolarization,

instead all spikes must be noise driven.

3.3 A temperature–dependent phase model of a cold receptor

Longtin and Hinzer [LH96] have recently studied bursting and skipping in a cold–receptor

model based upon an extension to Plant’s model [Pla81]. Plant’s model is a slow–wave,

parabolic–bursting neuron that derives from the Hodgkin–Huxley equations (section 2.1.5).

Although ionic models of this type allow much insight into cellular function, they involve

a set of five coupled differential equations and so are difficult to treat analytically. Conse-

quently I turn to a simpler canonical model.

3.3.1 Ermentrout and Kopell’s canonical bursting model

Ermentrout and Kopell [EK86] consider a general parabolic bursting model of the form

u̇ = f(u) + ε2g(u,v, ε) (3.1)

v̇ = εh(u,v, ε)

where the vector u ∈ Rp is identified with the vector of potentials contributing to the spiking

mechanism (compare with the Hodgkin–Huxley model of section 2.1.5) and v ∈ Rq describes

the vector of potentials associated with the slow wave (e.g. the inward voltage–dependent

Ca2+ and outward Ca2+–dependent K+ currents).

The f(), g(), h() are smooth functions of their arguments, and have the following properties

(i) u̇ = f(u) has an attracting invariant circle with a single critical (saddle–) point at

u = 0

(ii) v̇ = εh(0,v, 0) has a stable limit cycle
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As an example of (i), consider the reduced Hodgkin–Huxley equations

C
d
dt

V = −F(V,mNa, nK)
d
dt

mNa =
m∞(V )−mNa

τm(V )
d
dt

nK =
n∞(V )− nK

τn(V )
(3.2)

and set hNa = h∞ (compare with FitzHugh’s reduction, equation (2.9)). Typical null–

clines for these equations are shown in figure 3.3.1, and from them it is clear that the

system undergoes a saddle–node bifurcation. Below the bifurcation (figure 3.3.1a), there is

a single fixed–point and the dynamics are excitable: small perturbations of V decay away,

while those which cross the saddle–point separatrix cause a large excursion in V (i.e. an

action potential). At the saddle–node bifurcation (figure 3.3.1b), a pair of critical points

are created and the dynamics exhibit an invariant circle. This invariant circle persists when

the system is taken beyond the bifurcation (figure 3.3.1c) and the dynamics then becomes

oscillatory. Furthermore, note that since g(u,v, ε) depends on both of u and v, there are

regions of parameter space for which a non–zero ε can cause either excitable or periodic

behaviour.

In the weak–coupling limit, i.e. ε → 0, the invariant circle may be parameterized by a new

variable u ∈ S1. The system (3.1) can therefore be reduced from Rp × Rq to S1 × Rq, and

so to the form

u̇ = f̄(u) + ε2ḡ(u,v, ε)

v̇ = εh(u,v, ε)

u ∈ S1

v ∈ Rq
(3.3)

The invariant circle parameterized by u can now be mapped onto the unit circle by a change

of variables u = K(ϑ, ε). Under this second re–parameterization, (3.3) converges uniformly

(except in some neighbourhood of ϑ = π), in the limit ε → 0, to the following canonical

form

dϑ

dι
= [1− cos(ϑ)] + [1 + cos(ϑ)] ḡ(0,v, 0) (3.4)

dv
dι

=
1
c
h̄(0,v, 0) (3.5)
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Figure 3.3: Null–clines for the reduced Hodgkin–Huxley equations (3.2). (a) excitable dy-

namics: small perturbations of V decay away, while those which cross the saddle–point sep-

aratrix generate an action potential. (b) the saddle–node bifurcation and the creation of an

invariant circle. (c) persistence of the invariant circle: a limit–cycle solution corresponding

to repetitive firing.
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for all ϑ 6= π. Where ϑ ∈ [−π, π] is the transformed membrane potential, ι = εct, and c is

a constant.

Furthermore, since (3.5) has a stable limit–cycle solution v(ι), the system (3.4),(3.5) may

be replaced by

dϑ

dι
= [1− cos(ϑ)] + [1 + cos(ϑ)] ḡ(0, v(ι), 0) (3.6)

This canonical form has been named the atoll model [HI97] since the set of equilibria of the

fast sub–system is a circle, and the vector of activity (ϑ, v(ι)) avoids it (see figure 3.4).

�

ϑ

π

2π

−π

0

�����

�����	


�����	�

Figure 3.4: The atoll model [HI97] for ḡ(0, v(ι), 0) = cos (v(ι)): the set of equilibria of the

fast sub–system, equation (3.4), is a circle, and the vector of activity (ϕ, v(ι)) avoids it.
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3.3.2 A temperature–dependent phase model

I have modified the canonical form (3.6) to account for temperature effects. However, this

new model obeys similar dynamics and bifurcations. Specifically, I consider the following

dθ

dt
= [b + cos(θ)]−A cos (Ωt) [1− cos(θ)] (3.7)

= [b−A cos (Ωt)] + [1 + A cos (Ωt)] cos(θ)

where θ ∈ [0, 2π] is defined on the unit circle S1, and is identified with the (transformed)

neuronal membrane potential at the trigger zone. Each time θ(t) completes a full rotation

around the unit circle the neuron generates an action potential. The parameter b charac-

terizes the activity of the electrogenic Na+–K+ pump. The time–dependent term A cos(Ωt)

models the slow–wave dynamics, and I have chosen a cosine for its analytic simplicity. The

up–stroke of the slow wave corresponds to the inward Ca2+ current, and the down–stroke

to the outward K+ current. Note, however, that the experimental data shows that the

intervals between successive firings inside a burst typically increase monotonically through

the burst [BBH80]. This suggests that if indeed the bursting is of slow–wave type, then the

wave has an asymmetric shape. Thus, a more complex wave–form may better reproduce

the finer details of the discharge pattern. In ionic models such as Plant’s, the slow–wave

depends on the membrane potential via voltage gating. However, recall that under the

assumption of a weak coupling, the transformed equations (3.6) exhibit slow dynamics that

de–couple from the membrane potential.

Longtin [RBL98] has shown that the frequency Ω of the slow–wave can be related to bio–

physical parameters of a conductance–based model of slow–wave bursting. The specific

model chosen was the Plant model of the R15 cell of Aplysia, and his analysis predicts the

approximate frequency of the slow–wave as a function of temperature.

The system displays a saddle–node bifurcation from a stable fixed point, resulting in a
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stable limit cycle when

b−A cos (Ωt) = 1 + A cos (Ωt) (3.8)

each excursion around the limit cycle corresponds to the generation of an action potential.

Note that time appears here explicitly and so for certain parameter values, the bifurcation

can occur periodically in first one direction and then the other. Thus, if the slow oscillation

is of such magnitude that for part of the cycle

A cos (Ωt) <
(b− 1)

2
− ε (3.9)

where ε is some small positive number, then the neuron bursts. This oscillatory behaviour

across the saddle–node is much simpler than the corresponding bifurcations undergone

by ionic models. For example, the Plant model has a two–dimensional slow sub–system

that drives the fast, three–dimensional spiking dynamics through degenerate–homoclinic

bifurcations between steady–state and limit–cycle solutions.

Close to the bifurcation the phase model exhibits critical slowing down, i.e. relaxation to

a fixed point (the resting potential) becomes polynomial in time rather than exponential,

thus increasing the time for θ(t) to traverse the unit circle. Such behaviour has also been

described as passage through a bottleneck [Str94]. Therefore, within a burst there is a

non–uniform distribution of spikes: an indicator of parabolic bursting. Critical slowing

down and an associated bifurcation has been observed experimentally [MK78] in recordings

from the membrane of a squid giant axon. Below the bifurcation point, a periodic electrical

stimulus causes sub–threshold oscillations of the membrane potential which exponentially

decay to the resting potential. However, as the bifurcation point is attained (either from

above or below), the decay slows and is no longer exponential. Above the bifurcation point,

stimulation results in a regular oscillation of the membrane potential.

Equation (3.7) may be made more tangible by graphing 1 + A cos(Ωt) and b − A cos(Ωt),

as in figure 3.5a. A saddle–node bifurcation occurs when the sinusoids cross, and bursting
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occurs (with a mean number of spikes per burst, N ∝ ∆) when the overlap, ∆, between

them is large. ∆ is a function of all of A,Ω and b, in fact

∆ =
2
Ω

(
π − cos−1

(
b− 1
2A

))
=

1
Ω

(
π +

b− 1
A

)
+ O

[(
b− 1
2A

)3
]

(3.10)
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Figure 3.5: (a) The saddle–node bifurcation and bursting criteria for three different param-

eter regimes, with b > b ′ > b′′, and b ′ = 1 − 2A (see text). (i) when the overlap is large

the neuron bursts: i.e. for a time ∆. (ii) bursting has ceased, any spiking activity must

be noise driven and the neuron skips (i.e. it does not fire at every slow wave cycle). (iii)

all spiking has ceased and the neuron is silent. (b) There are three possible mechanisms

by which the burst length can be reduced (∆′ < ∆) (compare with (a)). (i) increasing slow

wave frequency, Ω ′ > Ω (ii) decreasing pump parameter b ′ < b (iii) decreasing slow wave

magnitude, A′ < A
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3.3.3 Modeling temperature dependence and fluctuations

The main effect of a temperature change is a variation in the rate constants of the biochem-

ical processes occurring within the cell. There is evidence that the hyper–polarizing effect

of the electrogenic pump becomes more pronounced [CA68] and that the amplitude of the

slow wave increases [LH96] with warming. Furthermore, inspection of the spike–trains and

corresponding ISIHs of figure 3.1 indicates that the slow wave frequency is also an increasing

function of temperature. To maintain the simplicity of this model, I therefore introduce

thermal dependence with linear functions of the magnitude of the pump coefficient, and of

the magnitude and frequency of the slow wave.

b → b(T ) = b0 − bT T A → A(T ) = A0 + AT T Ω → Ω(T ) = Ω0 + ΩT T (3.11)

where Ω0,ΩT ,A0,AT ,b0 and bT are constants. Here I am only concerned with the phe-

nomenology of temperature–dependent cellular operation, however note that more complex

relationships could be used if required. Figure 3.5b shows how the individual variation of

each of these parameters can alter the burst length (however, it is likely that the discharge

patterns observed are due to some combination of these mechanisms). I furthermore confine

my interest to the temperature range for which A(T ),Ω(T ) > 0.

The problem of quantifying the amount of neuronal noise present (see chapter 2) is exacer-

bated by the lack of intra–cellular recordings from these neurons. In the absence of synaptic

input, its main components are due to (chapter 2 and [DeF81]) thermal ionic movement;

to conductance fluctuations in the ion channels; and to pump noise. It is known (recall

the fluctuation–dissipation relation (1.1) and see e.g. [DeF81]) that thermal noise, ξT (t),

is proportional to the absolute temperature and so varies only slightly over the tempera-

ture range of interest. Pump noise could be modeled by making b(T ) a random variable,

b(T ) → b(T )ξm(t)+ξa(t). Here ξm(t) and ξa(t) represent multiplicative and additive random

noises respectively, and are drawn from some, as yet undetermined, distribution. However,

any one–dimensional multiplicative Langevin equation may be transformed into an additive

one [Ris89]. Thus, for simplicity these noise terms can be lumped together and so model
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neuronal noise by the simple addition of a random term ζ(t) = σξ(t) to the dynamical equa-

tion (3.7). Furthermore, for concreteness we will choose ξ(t) to be drawn from a zero–mean

Gaussian distribution, such that

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t− t ′) (3.12)

Such a choice for the distribution aids analysis, but the qualitative aspects of my conclusions

generalize to other distributions. I will refer to the noise variance D = σ2 as the noise

strength. Thus write

dθ

dt
= b−A(T ) cos (Ω(T )t) + [1 + A(T ) cos (Ω(T )t)] cos(θ) + ζ(t) (3.13)

from now on I will assume that b(T ), A(T ) and Ω(T ) depend implicitly on temperature.

Now examine the system numerically for different temperatures (figure 3.6) and choose b0,

bT , A0 and AT such that at low temperatures there is a part of the cycle for which (3.9) is

satisfied so that the neuron bursts (inset to figure 3.6f). As T increases Ω(T ) and A(T ) both

increase while b(T ) decreases. However, for a given temperature change the increase in A(T )

is smaller than and is counteracted by the larger change in b(T ). In this way both the intra–

and inter–burst periods also decrease with temperature (insets to 3.6d and 3.6e). For high

T equation (3.9) is never satisfied, and thus bursting does not occur, instead all spikes are

noise driven (inset 3.6a). At low temperatures the histogram (main figures) is dominated by

the time between successive spikes in a burst: the intra–burst period. As the temperature

increases, the burst length decreases and the inter–burst period dominates (figures 3.6b and

3.6c). For noise–driven beating (figure 3.6a) skipping occurs: higher sub–harmonics of the

slow wave begin to appear in the histogram.

3.4 Analysis of bursting and beating

The neuron’s behaviour depends strongly on both the noise strength and the temperature.

A graph of the mean number of spikes per burst, N(T ), versus T for a neuron subject
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Figure 3.6: Spikes trains (inset figures) and corresponding inter–spike interval histograms

(main figures) for increasing temperatures. Parameters are: A0 = 0.3, AT = 0.001, b0 =

0.675, bT = 0.007, Ω0 = −π/150, ΩT = π/1500, and D = 5.0.

to a vanishingly small level of noise, shows the staircase depicted in figure 3.7. Note that

N(T ) is constant over each plateau, but between adjacent plateaus changes by a single
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spike per burst. Each plateau is labeled by its respective value of N(T ), and the transition

temperature between the nth and (n − 1)th plateaus by Tn. If a low level of noise is now

introduced, the staircase retains its shape but the steps become rounded, however as D

increases the plateaus disappear and N(T ) approaches a smoothly decreasing function of

temperature.

0

4

8

12

15 25 35 45

Mathieu prediction

High noise (D = 0.05)

Zero noise (deterministic case) (D = 0)

Low noise (D = 0.0001)

T1T2

Figure 3.7: Mean number of action potentials per burst, N , versus temperature, T . Simula-

tion results with several noise levels are shown, and the circles (o) mark the corresponding

Mathieu predictions for the deterministic neuron. Parameters are: A0 = 0.3, AT = 0.001,

b0 = 0.675, bT = 0.007, Ω0 = −π/150, ΩT = π/1500, and D = 0.05. Two deterministic

transition temperatures are also shown. T2: the transition between beating and a burst of

two spikes per cycle, and T1: the transition from beating to silence. Contrast this figure with

the data shown in figure 3.2 (but note that in the figure above, temperature increases from

left to right, while it decreases in figure 3.2).

To understand the origin of the staircase, re–interpret equation (3.13) as a gradient descent

system in the limit of high friction

dθ

dt
= −dU

dθ
+ ζ(t) (3.14)
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and now view the model as a particle obeying a noisy dynamics in a time–dependent po-

tential U(θ, t) of the form

U(θ, t) = −γ(t) [λ(t)θ + sin(θ)] (3.15)

where

γ(t) = 1 + A cos(Ωt) and λ(t) =
b−A cos(Ωt)
1 + A cos(Ωt)

(3.16)

which is equivalent to an active rotator [SK86] with periodic coefficients: the multiplicative

term γ(t) periodically re–scales the magnitude of U , while λ(t) periodically sculpts the

shape of U . The coefficients γ(t) and λ(t) are both periodic with period 2π/Ω, but are

anti–phase.

3.4.1 The deterministic limit (D → 0) – the Strutt map

At any time t, the bias λ(t) characterizes the instantaneous deterministic dynamics. Three

regimes occur:

(i) λ(t) < 1: the oscillator has one stable (θ̂s) and one unstable (θ̂u) fixed point, each

given by the solutions to θ̂ = cos−1(−λ). This is termed the locked state and the

dynamics relaxes to the stable fixed point (see inset to figure 3.8a).

(ii) λ(t) = 1: the stable and unstable fixed points coalesce via a saddle–node bifurcation

to form a half–stable fixed point.

(iii) λ(t) > 1: the potential U has no minima and the deterministic dynamics has no fixed

points. The oscillator therefore rotates with the variable velocity

θ̇(t) = γ(t) (λ(t) + cos(θ)) (3.17)

and each rotation corresponds to the firing of an action potential. Such a solution is

termed a running state (see inset to figure 3.8b).
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Thus the extremal values of λ(t), say λmax = (b + A)/(1−A) and λmin = (b−A)/(1 + A),

define the global behaviour of the system.

(i) λmin > 1: the potential U never has a barrier. The neuron fires regularly, and the

system is always–unstable.

(ii) λmax < 1: the potential always has a finite barrier. The neuron is quiescent, and the

system is always–stable.

(iii) λmin < 1 and λmax > 1: a potential barrier exists for part of the cycle, and the system

is partially–stable.

An always–unstable neuron spikes epileptically3, with no useful temporal structure, and thus

has no relevance to this study. Therefore choose A0 and AT such that at low temperatures

the system is partially–stable, and at high temperatures the system is always–stable. Denote

the critical temperature for which λmax = 1 by Tc, which is defined by

b(Tc) + A(Tc) = 1−A(Tc) (3.18)

and so, for the linear system (3.11)

Tc =
1− b0 − 2A0

2AT − bT
(3.19)

(for the coefficients shown in figures 3.6 and 3.7 Tc = 550C). Thus, the nth burst plateau

corresponds to a partially–stable system for which the time when the barrier is absent is

commensurate with the time to wind n times round the torus.

Perhaps surprisingly it is found that T1 < Tc (recall that T1 is the temperature beyond

which the deterministic neuron ceases ever to fire). In fact there is a finite temperature

range between T1 and Tc for which one would expect the running mode to persist over a
3i.e. continually and at its maximum frequency
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Figure 3.8: The potential U(θ, t) for one cycle of the slow wave. (a) λmax < 1, the always–

stable potential. For low noise levels the oscillator tends to remain close to the minima of

the potential.(b) λmax > 1, λmin < 1, the partially–stable potential. When the barrier is

absent the oscillator may escape beyond 2π, generating an action potential. The particle

is then re–injected at θ = 0. The inset figures caricature the respective potentials at times

t = (2n + 1)π/Ω, n ∈ Z.
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significant part of the oscillation period even though, in the limit D → 0, no spikes are

generated. This is a consequence of critical slowing down close to the bifurcation. If λmax

is only marginally greater than unity then a ‘ghost’ [Str94] of the half–stable fixed point

causes the relaxation time τ0 to become comparable to the slow wave oscillation period.

The system is then unable to escape beyond this laminar region before λ decreases again

below unity and the system undergoes a second saddle–node bifurcation.

A condition for beating to occur may in fact be derived. For at least one action potential

to be generated per oscillation, θ must pass through π within the first half of the cycle, i.e.

within τ0 < π/Ω. If θ passes through π after one cycle then it moves so slowly that it is

unable to escape before the bifurcation recurs and it becomes trapped by the barrier. Thus,

if the oscillator is found at the stable state, θ̂s = cos−1(−λmin), at t = 0, this imposes the

condition:

∫ π
Ω

0
θ̇dt ≥ π − θ̂s (3.20)

The envelope function (3.10) is a heuristic that loosely predicts how the deterministic pat-

tern varies with temperature. However, for this deterministic case, it is possible to predict

exactly how many action potentials are actually generated during one cycle. Following

Ermentrout and Kopell [EK86] the zero–noise limit of (3.13) may be recast as a Mathieu

equation. Use the transformation

1
V

d
dt

V =
1 + b

2
cot

(
θ

2

)
(3.21)

and the identity

cos(θ) =
cot2( θ

2)− 1

cot2( θ
2) + 1

(3.22)

to obtain

d2

ds2
V + [a− 2q cos(2s)]V = 0 (3.23)
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where time has been rescaled so that 2s = Ωt and I have introduced, to accord with

convention [McL47], the coefficients a and q

a =
b2 − 1

Ω2
q =

A(b + 1)
Ω2

(3.24)

The Mathieu equation (3.23), is a linear equation with periodic coefficients [McL47], and

hence, according to Floquet’s theorem (see appendix A.1), has a general solution of the

form

V (s) = c1 exp(ρ1s)p1(s) + c2 exp(ρ2s)p2(s) (3.25)

where c1 and c2 are constants, ρ1 and ρ2 are termed characteristic exponents, and the

pi(s) are periodic functions with the same minimal period as the periodic coefficient of the

original equation (3.23). Four solution classes occur [JS87]:

(i) ρ1, ρ2 ∈ C with ρ1 = βi, ρ2 = ρ∗1, and β ∈ R, and the general solution is

V (s) = c1 exp(iβs)p1(s) + c2 exp(−iβs)p2(s) (3.26)

All solutions are therefore bounded and oscillatory but generally quasi–periodic since

two frequencies, β and 2 (i.e. the forcing frequency of (3.23)), are present.

(ii) ρ1, ρ2 ∈ R with ρ1 = α > 0, ρ2 = −ρ1, and the general solution is

V (s) = c1 exp(αs)p1(s) + c2 exp(−αs)p2(s) (3.27)

All solutions are therefore unbounded.

(iii) ρ1, ρ2 = 0, there is one solution of period 2π (and one unbounded solution).

(iv) ρ1, ρ2 = 1
2 ı, there is one solution of period 4π (and one unbounded solution).

The (a, q) plane is divided into a countable set of simply connected regions for which either

all solutions fall into class (i) – the stable regions, or they belong to class (ii) – the unstable
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regions. This situation is depicted in the Strutt stability map (figure 3.9). The boundaries

between the stable (shaded) and unstable (un–shaded) regions are given by curves containing

solutions of either class (iii) or class (iv) (bold and dashed lines respectively).
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Figure 3.9: The Strutt map: stability and instability regimes for the Mathieu equation. The

graph is symmetric about the ordinate.

The labelled ‘tongues’ in the Strutt map are instability regimes and contain unbounded

solutions. Let Ij denote the jth instability tongue, corresponding to general solutions of the

form (3.27). Unbounded solutions generally fall into two qualitative types [NM95]: either

oscillatory but with an amplitude that increases exponentially with time, or non–oscillatory

but exponentially increasing; my interest is with the former. According to the Sturm
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oscillation theorem [CL55], each of the periodic functions, p1(s) and p2(s) of a solution in

the jth instability region has exactly j zeros per oscillation period of the slow wave.

Returning to the original variable

θ(s) = 2 cot−1

[
2 (c1 (αp1(s) + p′1(s)) + c2 exp [−2αs] (−αp2(s) + p′2(s)))

(1 + b) (c1p1(s) + c2 exp [−2αs] p2(s))

]
(3.28)

since α > 0, then if c1 6= 0, θ(s) exponentially approaches the stable periodic solution

θs(s) = 2 cot−1

[
2 (αp1(s) + p′1(s))

p1(s) (1 + b)

]
(3.29)

Since p1(s) has j zeros over the period of the slow wave oscillation, the argument to

cot−1(. . .) ‘blows up’ j times over this period. Consequently θ passes through zero j times

within a period. Furthermore, by use of (3.7) and (3.9) it is simple to verify that each time

θ passes through zero, it does so with a positive velocity, θ̇. Thus, θ wraps around the torus

j times per slow wave cycle. This then corresponds to a burst containing j spikes.

The coefficients of the Mathieu equation (3.23) are parameterized by the temperature, and

so as T varies it carves a trajectory across the (a, q) plane. As the trajectory passes through

the kth instability region the neuron has a burst length of k spikes, generating the plateaus

previously seen in figure 3.7.

3.4.2 Stochastic dynamics of bursting and beating – smoothing the Mathieu

staircase

To clarify how the transitions between plateaus become ‘smoothed’ as noise is introduced,

I will examine the transition from beating to quiescence, occurring at T = T1, however my

conclusions will extrapolate to each transition between the nth and (n− 1)th plateaus.

Now introduce a small amount of noise into the dynamics, D 6= 0. For T marginally greater

than T1 the neuron now emits a succession of single spikes which are entrained to the

underlying slow wave, but occasionally cycles are skipped. As the temperature increases
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beyond T1, periods are skipped more frequently until the neuron becomes silent. At any

temperature the skipping rate depends on the noise level. Rappel and Strogatz [RS94a] and

Gang et al. [GDNH93] have argued that (depending upon whether the system is above or

below the saddle–node bifurcation) noise can propel the neuron either through the laminar

bottleneck (T < Tc), or over the incipient barrier (T > Tc), and thus aid it to fire. The

spectral signatures of such noise–induced crossings of a critical point, with an attendant

rotation, have been termed noisy precursors by [Wie85, NSS97].

Conversely, for temperatures slightly below T1 the noisy neuron is seen to occasionally

misfire and thus skip a period of the slow wave oscillation. In this regime, although the

deterministic neuron is able to fire, the noise can trap the system above the ghost bottle-

neck and postpone its firing. To understand this, note that critical slowing down in the

laminar bottleneck means that the noisy dynamics has negligible drift in this region and

so approximates a one–dimensional Wiener process. Thus, the neuron is equally likely to

diffuse in either direction. If the diffusion acts to diminish θ̇, the firing condition (3.20) may

be violated and firing retarded. Qualitatively similar retardation and trapping due to noise

has been noted by Apostolico et al. [AGMS94] as a failure mechanism in bi–stable switches

and by Mantegna et al. [MS96b] in the variations of the voltage across a periodically driven

tunnel diode when coupled to an RC circuit and a source of noise.

These two skipping modes have a natural interpretation in terms of the Strutt map. Neural

dynamics close to a transition temperature correspond to a region in parameter space that

is close to a tongue boundary. The inclusion of noise allows the neuron to execute a random

walk through the map, and so to explore adjacent regions of the parameter space. Thus, if

the neuron is in the jth tongue but lies close to the (j + 1)th, then the noise can carry the

neuron over the boundary, and thus augment the burst. Conversely, if the neuron lies closer

to the boundary with the (j − 1)th tongue, the noise can delete a spike from the burst.
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The skipping rate

I have shown that (equation 3.20) for the deterministic neuron, a spike is only generated if

θ passes through π within the first half of the cycle. Numerical investigations of equation

(3.14) show that the condition (3.20) generalizes to the case of weak noise, however now the

probability that θ is greater than π after half a driving period must be considered instead.

Introduce the conditional probability density p(θ, t|θ0, t0) subject to the initial condition

p(θ, 0|θ̂s, 0) = δ(θ − θ̂s) (3.30)

Therefore the probability P (θ > π, t|θ̂s, 0) that at a time t, θ is greater than π is given by

P (θ > π, t|θ̂s, 0) =
∫ 2π

π
p(θ, t|θ̂s, 0)dθ (3.31)

which is equal to the probability of generating an action potential. By performing an

ensemble average, this quantity may be equated with the mean firing, or skipping, rate

(when measured in spikes per slow wave cycle).

The conditional probability density obeys a Smoluchowski equation (section 1.3 and [Ris89])

∂

∂t
p(θ, t|θ̂s, 0) =

∂

∂θ

[
U ′(θ, t) +

D

2
∂

∂θ

]
p(θ, t|θ̂s, 0) (3.32)

where U ′(θ, t) represents the spatial derivative of the potential. The time–dependence of

the potential forbids a general closed solution to (3.32), and furthermore makes a numer-

ical solution difficult to obtain. However, an approximation to the probability density,

p(θ, t|θ̂s, 0) may be ascertained. First, numerically iterate an ensemble of N receptors θi(t),

i = 1 . . .N , for half a slow wave period, subject to the initial condition θi(t = 0) = θ̂s

∀i ∈ N . An approximation to p(θ, t|θ̂s, 0) will be given by a normalized histogram of the

ensemble of θi(t = π/Ω) and so an estimation of the firing rate may be found from equation

(3.31) (see figure 3.10).
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Figure 3.10: An estimation of the firing rate close to the transition temperature T1. The

squares show numerically observed firing rates (measured in spikes per slow wave cycle)

while the bold line depicts the rate as estimated by the method of section 3.4.2. Parameters

are: A0 = 0.3, AT = 0.001, b0 = 0.675, bT = 0.007, Ω0 = −π/150, ΩT = π/1500, and

D = 10−4. The inset figure shows a histogram approximation to the probability density

p(θ, t = π/Ω|θ̂s, 0) at T = 42oC.

3.5 Analysis of the near–threshold regime – noise enhanced sta-

bility and resonance

In this section I wish to shift the focus of attention to how the firing patterns depend upon

noise intensity rather than upon the temperature. Understanding the influence of noise on

the phase model (3.7) can provide insight into its effect on temporal coding in this and

other systems. I have established that noise can increase the dynamic range of a bursting

neuron, and so now ask how this enhancement depends upon the noise strength.
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Figure 3.11: Inter–spike interval histograms for T < T1. Parameters are: A0 = 0.3, AT =

0.001, b0 = 0.675, bT = 0.007, Ω0 = −π/150, ΩT = π/1500, and T = 38oC. Several values

of the noise standard deviation σ are shown.

3.5.1 Stability and trapping for T < T1

N(T ) is too coarse a measure of the neuronal dynamics when considering the influence of

noise since it neglects much of the fine detail of the distribution of firing times. A more

informative measure is the inter–spike interval histogram (ISIH). First consider the neuronal

spike train generated when T < T1 (figure 3.11). To compute the ISIH, the time intervals

between 2 × 104 consecutive spikes are measured, normalized, binned and histogrammed.

The resulting histogram for D = σ2 = 0 has a single narrow peak at 2π/Ω, corresponding

to one spike per cycle with infrequent skipping. The width of the peak indicates that each

spike is tightly synchronized to the slow wave. For increasing D the ISIH begins to show a

multi–peaked structure with peaks located at sub–harmonics of the slow–current, and with

heights that decay exponentially. Furthermore, as D increases, the peaks begin to splay

showing that synchronization to the slow–wave becomes less exact.

There is a critical noise level, Dc, which is strongly temperature–dependent and for which
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the multi–peaked structure is most pronounced. For D > Dc the higher sub–harmonics

subside and a new peak close to the origin begins to dominate the histogram. Examination

of the spike trains for D À Dc shows that the high noise causes the generation of several

spikes in one period, 2π/Ω, indicating that the new peak in the ISIH corresponds to a

noise–induced intra–burst period. However, such phenomena are rare in the experimental

data [BBH80] and so it is clear that these noise levels are unphysical. The major result of
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Figure 3.12: Residual SR: the variation with noise of the area under the 2nd and 3rd sub–

harmonic peaks, (P2 & P3) for T < T1, (T = 38 and T = 41). The standard deviation of

the noise, σ, is shown rather than the variance D since the maxima are better defined on

this axis. For clarity the curves drawn are interpolations through the data, the symbols are

merely meant to guide the eye.

both [AGMS94] and [MS96b] was that the mean escape time for a periodically modulated

particle moving in a partially–stable potential depends strongly, and non–monotonically,

on the noise strength. In this formalism, an escape event corresponds to the firing of an
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action potential. For vanishingly small noise levels, firing is entrained to the slow wave

and thus the mean firing time is close to one period of oscillation, 2π/Ω. For high levels

of noise, escape events are noise driven and interval times are randomly distributed with a

mean that is much less than 2π/Ω. However, intermediate noise levels can trap the particle,

causing it to skip cycles of the slow oscillation and thus prolonging the mean escape time

(a related phenomenon arises in the thermally–dependent Plant model [LH96]). In this

intermediate noise regime the distribution of firing times shows the multi–modal structure

[CM94] previously observed. A resonance effect was noted [AGMS94], termed residual

stochastic resonance: as the noise increases, the area under each peak except the first

increases to a maximum, and then decreases. As we have seen, all sub–harmonics reach

their maximum simultaneously, and thus the mean escape time is maximized. This maximal

condition signifies a resonance, which further implies that two (or more) of the system’s

time–scales must match. In fact, resonance is attained when the trapping time due to noise

is close to half of the driving period [AGMS94].

To measure Dc at a particular temperature, we follow [GMS95] and compute the strength

of the nth peak according to (1.48).

A plot of Pn, (n 6= 1) versus noise, now gives the uni–modal graph shown in figure 3.12.

Furthermore, it is clear that Dc is a function of the temperature: as T increases, Dc

decreases. This may be readily explained by considering that since the oscillation frequency

Ω(T ) is a function of temperature, so too is the resonance condition.

Residual SR should be contrasted with the complimentary effect for sub–threshold forcing

[GMS95] in which resonance is attained when the first, or harmonic, peak is maximal (see

section 1.5 and below).

3.5.2 Resonance for T > T1

The dogfish data of [BWSH94] indicates that noise is an important determinant of the neu-

ronal discharge pattern. Furthermore, the experiments reported in section 1.5.3 indicate

that noise might also aid the transduction of small sub–threshold signals by various sensory
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neurons. Autonomous SR (ASR) [GDNH93] (also termed “coherence SR” [NSS97]) is noise–

induced coherent motion in systems that are not subject to an external forcing. Longtin

[Lon97] has shown that autonomous stochastic resonance can occur in other models of neu-

ronal bursting: the Plant model and also the Hindmarsh–Rose model (a spike–driven burst-

ing model) [HR84]. The slow wave is an endogenous excitation, coupling multiplicatively

to the dynamics, and consequently this model is a likely candidate to exhibit autonomous

SR.
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Figure 3.13: Inter–spike interval histograms for T > T1. Parameters are: A0 = 0.3, AT =

0.001, b0 = 0.675, bT = 0.007, Ω0 = −π/150, ΩT = π/1500, and T = 44oC. Several values

of the noise standard deviation σ are shown.

At first glance, the discharge patterns for T > T1 are indistinguishable from those for

T < T1, since the spike trains for both regimes comprise single spikes with skipping. How-

ever, computation of histograms of firing intervals at various noise levels (figure 3.13), now

shows that the histogram for D → 0 is multi–peaked, with peaks located at sub–harmonics
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of the driving force, and with an exponential fall off. With increasing noise the height

of each harmonic first rises and then decreases, reaching a maximum at a critical noise

strength. For high noise levels a new peak close to the origin occurs again, representing

noise induced bursts of spikes. In contrast to residual SR the peaks do not reach their

maximum simultaneously, instead each peak has a unique critical noise (figure 3.14) and so

this model also exhibits ASR.
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Figure 3.14: Stochastic Resonance: the variation with noise of the area under the first three

harmonic peaks (P1, P2 & P3) for T > TC , (T = 38 and T = 41). The standard deviation

of the noise, σ, is shown rather than the variance D since the maxima are better defined on

this axis. For clarity the curves drawn are interpolations through the data, the symbols are

merely meant to guide the eye.
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3.6 Discussion

3.6.1 Paths for other receptors

There are many different thermally responsive bursting cells [BSWH84], for example: the

feline lingual and infra–orbital nerves, the Boa constrictor warm fibre, and the dogfish

ampullae of Lorenzini. The discharge patterns of all of these cell types exhibit many similar

qualitative features, but quantitatively they differ, e.g. differing burst lengths at a given

temperature. In addition, there can also be considerable variation within a single cell type

(recall section 3.2). Therefore, this paradigm of a temperature–dependent noisy trajectory

through the Strutt map allows a universal model that may explain the discharge patterns

of all of these cells.

3.6.2 Chaos

The existence of chaos in thermo–responsive neuronal spike–trains has been recently studied

in both real, [BSV+97] and model, [LH96] neurons. However, the phase model reported

here does not support chaos, instead its spike–train irregularities have a stochastic origin.

Is this important? For this class of neurons at least, the answer is “probably not”, since

it is more likely that the bursting pattern itself is the fundamental carrier of information

rather than the timing of individual spikes within a burst. Such patterns are more reliably

detected by higher neurons due to synaptic facilitation, and furthermore even a single burst

cause long–term synaptic modification [Lis97].

3.6.3 Noise distributions

I have chosen to describe thermal and pump noise by a simple, additive, white noise term.

Recall that the discharge pattern derives from a random walk through the Strutt map,

and that spike augmentation and deletion arise when the random walk crosses a tongue

boundary. In consequence, note that other additive noise distributions will produce quali-
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tatively similar burst patterns, and so the actual noise distribution is not pertinent to an

understanding of the general model. However, the noise distribution is extremely important

when describing a specific burst pattern.

3.6.4 Asymmetric burst patterns

In contrast to this phase model, discharge patterns from real cold–receptors do not exhibit

symmetric burst patterns. Typical [BBH80] burst profiles comprise a rapid increase followed

by a slower decrease in spike frequency, resulting in a ‘sawtooth’ profile. Such a saw tooth

could be generated by a fast–activating and slowly in–activating calcium dynamics, e.g.

calcium–induced–calcium release from internal stores. Within the phase model paradigm,

the spike distribution within a burst may therefore be changed by a selecting a different

functional form of the slow oscillation. However, as a consequence of the lack of intra–

cellular recordings, there is no experimental evidence to guide this choice, and so as a first

approximation I have chosen a cosine for its tractability.

3.7 Conclusions

I have presented a tractable phase–model for cold–receptor function. This canonical phase–

model can be related to more complex, bio–physical, models of neuronal operation. I

have investigated the phase–model (both numerically and analytically) in the deterministic

regime and also when subject to a finite amount of thermal noise. Numerically obtained

spike trains and inter–spike interval histograms from the phase model agree well with the

experimental data. My investigations indicate that skipping might be caused by noise. I

have further shown that both the number of spikes in a burst, and also the skipping rate at

any given temperature may be predicted. I have studied how altering the noise level affects

the dynamics and I have seen the skipping regime may be sub–divided: the first part of

skipping is caused by noise–induced trapping and the second part is due to noise–induced

spiking. Finally, I have demonstrated that the phase–model displays a non–monotonic

dependence on noise strength, and in fact exhibits both resonant trapping and autonomous

stochastic resonance. The main results of this chapter are to appear in [RBL98].



Chapter 4
The perception of ambiguous images

4.1 Introduction

The perception of an ambiguous figure is a multi–stable process [Att71]. An ambiguous

figure is one that has two (or more) perceptual alternatives, and classic examples are the

Necker cube [Nec32] (figure 4.1 (a)) and Fisher’s man/girl figure [Fis67] (figure 4.1 (b)).

When one looks steadily at such a figure, the information impinging upon the retina remains

constant. In spite of this, the perception of the figure is found to flip continually and

randomly between the possible interpretations, although both are never seen simultaneously.

This reversal of perception can be influenced by will and practice, but cannot be prevented.

The perceived pattern is stable between flips, but if a subject looks at an image for several

minutes the stability periods initially habituate for 1–3 minutes during which time the

flipping rate increases. After this initial time a stable average period is observed, and

this average stability period of an interpretation is approximately constant if all other

factors are held fixed. However, mean stability times differ significantly between people and

between patterns. A probability distribution of switch times may be generated by taking

an histogram of the switching time series, and the resulting distribution has been fitted to

76
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a gamma distribution1 [BDA+72].

(a) (b)

Figure 4.1: Ambiguous figures: (a) the Necker cube and (b) Fisher’s man/girl figure (repro-

duced from [CA93]).

An instructive demonstration of how stable an interpretation can be is to fold a piece of

card along its longitudinal axis and place it on a flat surface. When the card is viewed

from above at a 45o angle for several seconds with only one eye, it is seen to reverse and

appears to stand up on end like an open book. If one’s head is now moved from side to

side while the card is reversed, the brain attempts to make sense of the resulting change

in perspective. The only way it can do this is by attributing motion to the card and so it

appears to twist backwards and forwards.

One can clearly observe ‘locking in’, or stabilization, of a perceptual alternative while view-

ing the Leeper–Boring figure (frontispiece). For example, if the nose/chin line is tentatively

identified as a nose, then the line below is assumed to be a mouth and the shapes above

to be eyes. These partial identifications mutually support each other to form the stable

perception of an old woman. If however the line is seen as a chin then a similar process

provides the perception of a young woman. Which facet is perceived first depends not

only on accidental factors, such as which part of the figure is seen first, but also on the

subject’s pre–conceptions. For example, initial interpretations of the Leeper–Boring figure
1The gamma distribution of integer order a > 0 is the waiting time to the ath event in a Poisson process.

A gamma deviate has the probability density

pa(x) =
xa−1 exp(−x)

Γ(a)
(4.1)

where Γ() is the gamma function. When a = 1 it reduces to the exponential distribution.



4.1. INTRODUCTION 78

are distributed among the general population according to 40% perceiving the old and 60%

perceiving the young woman. If a group is first exposed to a strongly biased version of

the figure (figure 4.2) and is then shown the unbiased one, close to 100% perceive the old

woman first. Furthermore, spontaneous reversals are inhibited until the other aspect of the

figure is pointed out to the subject.

Figure 4.2: The biased Leeper–Boring figure (compare with frontispiece). If a group of

subjects is first exposed to this figure and then shown the unbiased one, close to 100% will

perceive the old woman first (see text). (Reproduced from [Hak91]).

This notion of the brain dynamics locking in to an attractor is a metaphor that has proved

invaluable to the understanding of associative memory [Hop82] and olfactory recognition

[Fre91]. Furthermore, such a paradigm relates well to Shepherd’s thesis [She87] of a metric

of similarity: the brain represents objects as points in some psychological space in such

a way that ‘similar’ objects inhabit proximal regions. The putative neural mechanism for

recognition is [Att71, SH95] that each interpretation is represented by a distinct attractor,

and the dynamics relaxes to whichever attractor has the greatest overlap with the retinal

input. Reversal was originally thought to be due to habituation: active neurons would be-

come satiated and fire less frequently, de–emphasizing the attractor. However, habituation

is a largely deterministic process, and analysis of the return map of the switching times

[SH95] reveals that the switching dynamics is stochastic with no causal component. Rever-

sal is therefore a noise–induced transition between two attractors, and is due to fluctuations

in the perceptual process. It has little dependence on habituation. Since switching can still
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occur without changing one’s focus of attention, these fluctuations are presumed to have a

neural origin (chapter 2).

With the exception of the Necker cube, the two perceptual alternatives are rarely of equal

strength and typically one interpretation is preferred. Reversion still occurs if this bias

is weak, but the reversion times of each individual component differ and the stronger the

bias, the longer the reversion time. To invoke the attractor metaphor, such a preferred

interpretation would be an attractor with a deeper minima than the other.

Perceptual ambiguity is not confined to humans, since other animals appear to exhibit

similar responses to these figures. If hens are exposed to figure 4.3 moving to the left a fear

response is elicited since it resembles the motion of a bird of prey. However, if it is shown

moving to the right it appears to be a goose in flight and so is ignored [SK95].

Figure 4.3: If the figure moves to the left it appears as a bird of prey and so generates a

fear response in hens, but moving to the right it resembles a goose and is ignored.

4.2 Stochastic resonance in cognition

Recent experiments imply that perceptual fluctuations can interact with a periodic bias in

a manner that is consistent with stochastic resonance.
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4.2.1 Riani and Simonotto’s experiment

Figure 4.4: The biased Necker cube: fixation on the red dot skews one’s perception toward

the lower left corner appearing in the foreground, while fixation on the blue emphasizes the

upper right as foreground (see text).

There is a weak correlation between one’s fixation point on a figure and one’s interpretation

of that figure [ES78]. This is readily seen by fixing on one of the dots in figure 4.4: fixation on

the red dot skews one’s perception toward the lower left corner appearing in the foreground,

while fixation on the blue emphasizes the upper right as foreground. Riani et al. [RS95]

have exploited this fact to bias periodically a Necker cube. They superimposed a moving

coloured spot which travelled along a line contained within the middle of the figure and

inclined at 60o to the horizontal. The amplitude of the trajectory was smaller than the

dimensions of the cube, and its motion was sinusoidal with a period of 10 seconds. For

the unbiased Necker cube, reversal times are symmetric, and they are gamma distributed.

The mean and the standard deviation of the gamma distribution depend upon the size

and aspect ratio of the cube [BCR+82], increasing for larger cubes. The dimensions of the

cube therefore parameterizes the effect of perceptual fluctuations on the recognition process.

Thus we have a bi–stable system with a deterministic time–scale and a variable source of

noise.

Cubes of varying size were presented to test subjects and a time series of reversal periods

taken. The power spectra of the time series clearly show the effect of periodic modulation.
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Pronounced peaks appear at the signal frequency and at its higher harmonics, which are

absent when there is no external modulation. Such peaks indicate that reversal times are

partially entrained to the periodic bias, and are clear evidence of stochastic resonance.

4.2.2 Chialvo and Apkarian’s experiment

11 12 13 14 15 16 17

98765432

Figure 4.5: Interpolations between the two extremes (figures 1 and 17) of Fisher’s man/girl

figure. (Reproduced from [CA93].

Two biased versions of Fisher’s man/girl figures were drawn [CA93], representing each of

the two possible interpretations. A series of 17 images interpolating between them was

generated, as shown in figure 4.5. Images from this series were selected at random and

presented to each of a group of subjects, and the subject was asked to rank each image

as to its position in the series. As the histogram in figure 4.6 clearly shows, the subjects

wrongly identified most of the images. They tended to classify them to the two extremes –

the man’s face and the young girl, and rarely identified them as transitional images, showing

that each person’s perception can be reduced to a bi–stable map.

Therefore, in analogy with other work on noisy bi–stable systems, image perception was

studied iteratively. An initial image was presented and categorized from 1 to 17 by the

subject. A random number and a sinusoidal modulation were added to the number corre-

sponding to the identified image, and the resulting number determined the next figure to

present. This new figure was then categorized and the process repeated, and so on.
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Figure 4.6: Perception as a bi–stable map. (a) Images were drawn at random from the

interpolated sequence (figure 4.5) and then presented to a subject. The graph shows how

frequently a particular image was presented during the experiment. (b) The images were

classified by the subject. The graph shows how frequently a classification was made. (After

[CA93].

To continue with the analogy to a bi–stable system, the authors define a ‘residence time’ as

the number of images presented before perception switches from one extreme interpretation

to the other. Both the statistics of residence times, and the signal to noise ratio of the

switching time series clearly show a degree of coherence between the reversal times and the

(masked) periodic modulation, again suggesting stochastic resonance at the cognitive level.

4.3 A cognitive model of the perceptual process

Rumelhart et al. have used the framework of Parallel Distributed Processing (PDP)

[RSMH86] to describe the perception of ambiguous figures, and have devised a constraint

satisfaction network capable of interpreting the Necker cube. Such networks are equivalent

to a suitably configured Hopfield network [Hop82], where each node corresponds to a hy-

pothesis about the image, and each connection represents constraints between hypotheses.

Connections, ωij , between nodes are either excitatory (hypotheses i and j are complemen-

tary), or inhibitory (they are conflicting). If the activation of the ith node is ai ∈ {0, 1}
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then each node evolves according to

ai → 1 if
∑

j 6=i ωijaj > 0

ai → 0 otherwise
(4.2)

and the network is updated asynchronously. It can be shown [Hop82] that the energy

E = −1
2

N∑

i=1

N∑

j=1

ωijaiaj (4.3)

is a Lyapunov function for the dynamics. The connections, ωij , are chosen so that the

energy landscape of the network has two global minima, and each minimum corresponds to

one interpretation of the cube.

The analysis of [RSMH86] extends only to recognition, and switching does not occur in

their model. An obvious extension is to model perceptual fluctuations by the inclusion of a

random component in either the energy function, or each nodal activation. If enough noise

is present, transitions between minima will occur. With this in mind, Riani and Simonotto

[RS94b] have extended the PDP model to account for stochastic resonance. The network

is again updated asynchronously, and noise is added at each update by randomly selecting

a single neuron and flipping it (i.e. 0 → 1 or 1 → 0) and evolving the network according to

the Metropolis algorithm [HKP91]: the new network state has an acceptance probability of

P (δE) depending on the energy change δE ≤ 0, with

P (δE) = 1 if δE ≤ 0

P (δE) = exp
(
− δE

kBT

)
otherwise

(4.4)

where kB is Boltzman’s constant, and the parameter T now introduces a ‘temperature’ into

the dynamics. Thus, the network state can now switch between minima with a mean rate

that has an Arrhenius dependence on T . When a weak periodic driving term (of amplitude
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A and frequency Ω) is added to the energy function, such that

E = −1
2

N∑

i=1

N∑

j=1

ωijaiaj + A sin(Ωt)

[∑

i∈A
ai −

∑

i∈B
ai

]
(4.5)

(where {A} is the set of active nodes, and {B} the set of inactive ones) then transitions be-

tween minima become partially entrained to the forcing and the network displays stochastic

resonance.

4.4 Haken’s competitive network

A second model of the perceptual process is due to Haken [Hak87, Hak91]. Haken’s network

obeys a competitive gradient dynamics in a potential which has strictly–localized ground

states: a single node is active and all others silent. To model the interpretation of ambiguous

figures: the recognition process is identified with the network’s relaxation to a ground state,

and each such state is ascribed to one of the possible interpretations of the figure.

The remainder of this chapter will analyse the dynamics of Haken’s network and further

show how it may be extended to model reversal and stochastic resonance.

4.4.1 Network dynamics

Haken’s original model comprises a single–layer network of N nodes, where the state of the

ith node is qi ∈ R with i = 1 . . . N . Each activation qi is interpreted as the overlap between

a presented pattern and some stored prototype. A network of N nodes can therefore store

and recognize N percepts. Each prototype is first encoded as a vector v̂k with k = 1 . . . N ,

for example its components could be pixel values of the image. The image to be recognized

is then pre–processed and similarly encoded to give a vector v. This vector is then presented

to the network, and the overlap

qi = v̂i.v (4.6)
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with each prototype computed. The network then evolves according to the gradient dy-

namics [Hak91]

q̇i = −∂U(q)
∂qi

= (1− 2Z(q) + q2
i )qi (4.7)

with

U(q) = −1
2
Z(q) +

1
2
Z(q)2 − 1

4

∑

i

q4
i (4.8)

and

Z(q) =
∑

i

q2
i (4.9)

represents a form of global coupling. Note that the lack of local interactions implies that

there is no natural network topology. Figure 4.7 shows a plot of the potential U(q) for a

network of two neurons, q1 and q2.

Equation (4.7) is invariant under the transformation q → −q. Moreover, qi(t) ≥ 0 for all

t > 0 and i if qi(0) ≥ 0 for all i. For suppose that qi(t) = 0 and qj(t) ≥ 0 for all j 6= i.

Setting qi = 0 on the right-hand side of equation (4.7) shows that q̇i(t) ≥ 0. That is, qi

cannot cross over to the negative real axis. The network converges to one of the stationary

states of the potential U , that is,

−∂U

∂qi
= q3

i + (1− 2Z)qi = 0 (4.10)

for all i. Thus the equilibria of equation (4.7), denoted by q̄, satisfy

q̄i = 0 or q̄i =
√

2Z − 1 (4.11)

with Z determined self–consistently. Hence the set of stationary states can be divided into

N + 1 classes, each of which is determined by the number m of excited sites. For a given
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Figure 4.7: Plot of the potential for a two–neuron network. Minima are shown at (1,0),

(0,1), (-1,0), (0,-1) and a maximum at (0,0).

m,

Z =
m

(2m− 1)
(4.12)

and the corresponding potential at a stationary state is

U (m) = − m

(8m− 4)
(4.13)

Linear stability analysis [Hak91, Bre97] establishes that only the stationary states m = 1

are stable, whereas all other stationary states are either unstable (m = 0) or saddle points

(m > 1). For each state in the class m = 1, there exists a single excited site, i0 say, such

that q̄i = δi0,i. Moreover Z = 1 and U (1) = −1
4 . These are the N strictly localized ground

states of the network. There are two homogeneous stationary states given by the vacuum
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state m = 0 and the dissipative state m = N . The former satisfies qi = 0 for all i and

U (0) = 0 and the latter has

q̄i =
1√

2N − 1
∀ i (4.14)

and

U (N) = − N

(8N − 4)
(4.15)

In conclusion, the ground states of the system consist of strictly localized states in which

a single site is excited and the remainder are silent; the particular ground state selected

depends on the initial data and/or additional applied inputs. If there are no external inputs,

then the excited node is the one with the highest initial activity (see figure 4.8). The network

therefore assigns the pattern to the prototype with which it had the largest initial overlap.

In other words it dynamically realizes a winner–takes–all strategy, and such networks are

also known as competitive networks. Competitive networks signify their outputs by the

firing of a single node, or a small proximal group of nodes. They thus classify data by

the firing of the same node(s) for all inputs that belong to a single category. The network

can therefore recognize only one pattern at a time, and thus dis–ambiguates its input in a

way that is consistent with the perception of ambiguous figures. It can also be shown that

these winner–takes–all networks are equivalent to associative memories [Koh84], and Haken

has demonstrated that this particular network can perform associative recall of digitized

photographs [Hak91].

One obvious drawback to this model is its inability to learn. Output states are ‘hard wired’

into the dynamics, and all have the same size basins of attraction. For a truly biological

system one would want the facility to learn new categories, and also to emphasize or de–

emphasize others (for example the biasing of the Leeper–Boring of figure 4.2). In fact,

Haken’s original formulation included variable synaptic strengths but for simplicity I have

set them to be equal to unity and thus have neglected their effect.
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Figure 4.8: Evolution of Haken’s network. Given the initial set of activations (overlaps)

shown in (a), the network evolves to a stationary state (b) such that the node with the

highest initial activation also has the highest final activity (q = 1), while all others are

silent (q = 0).

4.4.2 Stochastic dynamics of the Haken model

Since Haken’s network is a tenable model for the perception of ambiguous figures, it is

illuminating to push the analogy further. Ditzinger and Haken [DH89] reformulate the

model to include habituation–induced reversal. Specifically, they describe a network of two

nodes (n = 1, 2) which satisfy

q̇i =
(
Λi(t)− 2Z(q) + q2

i

)
qi (4.16)

where the Λn(t) are termed attention parameters, and evolve according to

Λ̇i(t) = a− b Λi(t)− c qi + ζi(t) (4.17)

where ζi(t) is a zero–mean white–noise source. In the absence of noise, the coupled equations

(4.16) and (4.17) naturally oscillate; and so the inclusion of noise simply causes fluctuations

about a mean oscillation period. This model can therefore reproduce experimentally ob-
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tained reversal–time distributions. The underlying switching dynamics of Ditzinger’s model

are periodic (albeit with a stochastic component which ‘randomizes’ the switching times),

however the return–map analysis of Schöner et al. [SH95] has shown that reversal is a

purely stochastic process and has no periodic component, and this weakens the plausibility

of Ditzinger’s model.

Instead, model the reversal phenomena by introducing a simple, local, additive–Gaussian

noise to the dynamical equation of each neuron (equation (4.7)). This could correspond,

say, to the inclusion of internal neuronal noise (chapter 2). Transitions between states (each

of which is a reversal) will now be dictated by the Arrhenius–type escape rate discussed in

section 1.4 and so will be exponentially distributed.

Furthermore, to explore the possibility of stochastic resonance, select two neurons i = 1, 2,

say, and drive the network with the weak periodic bias

Ii(t) = A(δi,1 cos2(Ωt) + δi,2 sin2(Ωt)) (4.18)

(such a bias could correspond to the moving coloured dot in figure 4.4). Further impose

that the forcing be weak (A is small), so that the bias itself is unable to cause transitions

between states, i.e. a sub–threshold forcing. Equation (4.7) then becomes

q̇i(t) = −∂U(q)
∂qi

+ ζi(t) + Ii(t) (4.19)

where ζi(t) = is a zero–mean Gaussian white noise process with

〈ζi(t)〉 = 0 and 〈ζi(t1)ζj(t2)〉 = σ2〈ξi(t1)ξj(t2)〉 = σ2δi,jδ(t1 − t2) (4.20)

Thus the noise is un–correlated between neurons, and has variance D = σ2.

Numerical simulations show that at low noise levels the network tends to remain in one

of two possible output states, and that switching events between these two states occur
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exceedingly rarely. In the limit of zero noise these states correspond to qi = δi,1 and

qi = δi,2, and the occupied one depends on initial conditions. As the noise is gradually

increased the network begins to jump between output states with a transition rate that is

partly entrained with the driving force. For high noise levels the network randomly flips

between output states and there is no synchrony with the driving signal. Simulations also

show that in the entrained regime there is a clear separation of time–scales for the system,

the two scales are: the time to relax to an output state trelax, and the mean residence time

of an output state, tres, with tres À trelax. Therefore make the adiabatic assumption and

neglect the relaxation time.

To quantify the behaviour of the network, tabulate and histogram the residence times of an

output state (recall section 1.5). The resulting distribution typically displays peaks centred

at

Tp =
(

p− 1
2

)
T , p ∈ Z (4.21)

where T = π/Ω is the driving period. These peaks are superimposed on an exponentially

decaying background (see inset to figure 4.9). Denote the strength of the kth peak by

Pk, computed according to (1.48). Recall that each Pk passes through a maximum as a

function of both noise strength and also of the forcing period [GMS95], and further that for

a particular driving frequency ν = T −1, stochastic resonance is attained at the particular

noise strength σ for which the strength of the first harmonic, P1, is maximal. Figure 4.9

shows how P1 for the Haken network varies with noise strength σ. Several values of the

driving frequency are shown. It is seen that the maximal value of P1 occurs at a non–zero

value of ν, and that as ν increases, this maximum is shifted to higher noise levels.

To analyse the dynamics of this system, its effective dimensionality must be reduced and

it is not a priori obvious how to do this. However, note that for low noise levels qn(t) ≈
0 ∀ n 6= 1, 2, and thus to a good approximation equation (4.19) reduces to a two–dimensional

system (n = 1, 2) with U given by equation (4.7) for N = 2. In the positive quadrant the

potential U(q1, q2) has two minima qa at (1, 0) and (0, 1), and a saddle at qs = ( 1√
3
, 1√

3
)
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Figure 4.9: Variation of P1 with noise strength σ for the non–diffusive network. Three

different values of the driving frequency ν are shown, and as ν increases σopt increases.

The inset shows a typical exponentially decreasing histogram of residence times: time is in

multiples of T0 (see text).

with U(qs) = −1
6 , see figure 4.7. Since the periodic forcing is chosen to be positive–valued

the system is retained in the positive quadrant and thus the effects of the minima at (−1, 0)

and (0,−1) may be neglected. Recall that the system remains in the positive quadrant in the

absence of any noise or external forcing. U may therefore be reduced to a two–dimensional

bi–stable potential, provided that the driving amplitude, A, is not too small and the noise,

σ, is not too large.

To qualify as resonance, the time–scale matching relation (1.46) must be satisfied. Recall

that this occurs when P1 is maximal (see chapter 1). Assume that all transition events occur

at the saddle point, since transitions at all other points are exponentially less likely. Recall

that the mean escape–rate from a given minimum in an unperturbed multi–dimensional
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multi–stable potential is given by the generalized Kramers’ rate formula (equation (1.41))

r(σ) =
λ

2π

√
detH(qa)
| detH(qs) | exp

(
−2δU

σ2

)
(4.22)

The Hessian H of the potential has components

Hmn =
∂U2

∂qm∂qn
(4.23)

and is evaluated at the minima, qa, and the saddle, qs. λ is the positive eigenvalue of the

Hessian of the potential at the saddle, and δU = Us−Ua = 1
12 is the height of the potential

barrier at the saddle. For this system the pre–factor in equation (4.22) has the value 0.39.

Resonance occurs when the time for the system’s mean residence in one minimum is close to

half the driving period [GMS95], thus r = 2ν. Therefore, for a particular driving frequency

ν, the optimal noise level, σopt, for resonance may be experimentally determined. Using

(4.22), σopt determines ropt, the corresponding theoretical escape rate. Thus ropt may be

compared with the original driving frequency ν. Figure 4.10 shows plots of r(σ) versus noise

strength σ, and 2ν versus optimal noise strength σopt. It is seen that the optimal noise level

matches well that predicted by the theory.

Note that in the absence of any periodic forcing the histogram of residence times is es-

sentially a decaying exponential as predicted from Kramers’ theory and as observed in

Borsellino’s reversal data [BDA+72].

4.5 The diffusive Haken model

Connectionist models such as Rumelhart’s describe psychological phenomena in terms of

the interactions between such cognitive processes as ideas and schemata. They are therefore

high level explanations of how ambiguous figures are perceived. The question therefore arises

as to the low level neural substrate underlying this effect.
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Figure 4.10: Stochastic resonance: the matching of the theoretical escape rate r with twice

the driving frequency ν.

Electro–physiological recordings from single cortical cells indicate that in the brain the

representation of sensory information is not encoded by the global activity of the entire

cortex, but rather by the firing patterns of small groups of neurons (see [FY95] and references

therein). Furthermore, neurobiologists have noted that in many regions of the cortex, groups

of adjacent neurons appear to form higher functional units that serve to analyse some

particular stimulus feature such as the orientation of an edge of an image [Swi96], or the

position of a sensory stimulus on the skin [KNS+79]. If each node in a competitive network

is interpreted as a neuron, then such networks can provide rudimentary models of how

perception and categorization may occur in real brains [vdM73]. However, it is clear that

a competitive network with a single output neuron is not robust to degradation: if a single

cell is destroyed then the entire corresponding category is lost. Neural network models

of the formation and behaviour of these coherent structures in brain activity therefore

generally involve two aspects: (i) a selection mechanism that determines the centre of a

localized excitation in response to an input, and (ii) an interaction mechanism that serves

to spread the response over a neighbouring region of the network, leading to a distributed
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response. Haken’s network dynamically implements a selection mechanism, and recent work

[SB92, Bre95, Bre97] has extended the model to take into account a simple interaction

mechanism, resulting in a distributed representation.

This interaction mechanism comprises the inclusion of a diffusive coupling term in the

potential of the original Haken model. For certain values of the coupling strength there

can exist a balance between the effects of this diffusion and of the localizing potential,

yielding new states that are localized excitations (or bubbles) distributed over many neurons.

These bubbles represent a very robust coding of information since neighbouring cells aid

the reconstruction of lost information following the ‘death’ of a single cell. Furthermore,

Kohonen [Koh82] has shown that such bubbles can enable the construction of topographic

maps.

First impose a d–dimensional square lattice topology upon the network; the diffusive Haken

model has a potential [SB92]

Û(q) =
µ

2

∑

〈i,j〉
(qi − qj)2 + U(q) (4.24)

where 〈i, j〉 denotes summation over nearest neighbour pairs. The first term on the right-

hand side of equation (4.24) represents a diffusive interaction with coupling strength µ.

Using the idea of an anti-continuum limit [Aub95] a uniform continuation from the zero

diffusive coupling (µ = 0) case can be performed (see appendix A.2) to show that de–

localizations of the original ground states occur (see figure 4.11), and that these continued

solutions can persist for some finite coupling (i.e. for µ < µc).

Furthermore one can show that to a first approximation each state has a potential

Ûmin(µ) ≈ Umin + dµ (4.25)

where d is the dimensionality of the network. It may be shown that such states persist for all

values of µ in one-dimension [SB92], whereas for d > 1 there exists a critical coupling µc(d)
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Figure 4.11: Evolution of the diffusive Haken network. Given the initial set of activations

shown in (a), the network evolves to a stationary state (b) such that the node with the

highest initial activation also has the largest final activity (say q ′, with q ′ ≤ 1). However,

now adjacent neurons are also excited, and the original ground state is de–localized (compare

with figure 4.8).

beyond which localized ground states cease to exist and the effects of diffusion dominate

[Bre95]. The critical coupling can also be computed and is found to be

µc(d) =
1

10d
(4.26)

In fact, the analysis of [Bre95] shows that these continued solutions occur for more general

forms of coupling than the simple diffusive one considered here. The only criterion being

that the interaction function be C1 [MS95] and that coupling strength decays exponentially

with distance [Bre95] (where the distance between two points on the lattice is measured as

being the number of lattice sites separating them).

4.5.1 Stochastic dynamics of the driven diffusive model

For concreteness, consider a one-dimensional lattice and select two neurons separated by X

lattice sites with X sufficiently large such that the ground states centred at the two sites
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have very little overlap. As in the non–diffusive case, introduce local additive noise together

with a periodic stimulation of the two selected neurons given by A cos2(Ωt) and A sin2(Ωt)

respectively. The equations of motion are thus of the form

q̇i(t) = −∂Û(q)
∂qi

+ σξi(t) + Ii(t) (4.27)

with Û(q) given by (4.24). A resonant effect is again observed with the system switching

between the states localized about the two centres (see figure 4.12).
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100 125 150 175 200 100 125 150 175 200

Figure 4.12: Two snapshots of the evolution of the network with diffusive coupling µ = 0.5:

(a) before and (b) after the network has flipped between states. For clarity the low noise

case is shown.

Plots of P1 versus σ are shown in figure 4.13 for various coupling strengths. Observe that

as µ is increased, the maxima of P1, corresponding to resonance, is shifted to lower noise

levels. This may be explained by noting that increasing µ causes a decrease in the barrier

height δÛ(µ) and thus an increase in the unperturbed transition rate (4.22). A method for

calculating δÛ(µ) is shown below.

When µ is sufficiently large, the localized solutions of the one–dimensional diffusive Haken

model (in the absence of noise and external forcing) are distributed over many lattice sites

suggesting that they can be approximated by a continuum version of the model. Following
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Figure 4.13: Variation of P1 with noise strength σ for the diffusive network. Three different

values of the coupling strength µ are shown, and as µ increases σopt decreases. The driving

frequency ν is held constant.

[SB92, Bre97], the potential governing the gradient dynamics of the continuum model takes

the form

Û [q, µ] =
∫ ∞

−∞
dx

[
µ

2

(
∂q(x)
∂x

)2

− q(x)4

4

]
− 1

2
Z +

1
2
Z2 (4.28)

with

Z[q] =
∫

R
dx q(x)2 (4.29)

and µ a renormalized diffusion constant. By means of the Euler–Lagrange equation, sta-

tionary solutions of the dynamics satisfy

µ
d2q

dx2
= (2Z[q]− 1) q(x)− q(x)3 (4.30)
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Localized states can now be interpreted as finite energy configurations, or instantons, of

the continuum model. Using phase–plane analysis it can be shown that for fixed Z, an

instanton centred at x = 0 is described by [SB92, Bre97]:

q(x) = q0

[
cosh

(
q0x√
2µ

)]−1

(4.31)

where the instanton amplitude is

q0 =
√

(2Z − 1)2 (4.32)

This leads to a self–consistency condition for Z of the form

Z = 4
√

µ(2Z − 1) (4.33)

which has real solutions provided that

µ ≥ µ̄ =
1
16

(4.34)

Keeping only the lower energy solution, the amplitude of the instanton as a function of the

coupling µ is

q0(µ) =
√

2
µ

µ̄

(
1−

√
1− µ̄

µ

)
(4.35)

It follows that the energy of the instanton is (note that equation (4.25) is only valid in the

limit µ → 0)

Ûmin(µ) = F (q0(µ), µ) ≡ −
√

2µq0 + 4µq2
0 −

√
2µ

q3
0

6
(4.36)

The barrier height for transitions between two single–instanton states can now be computed.

Suppose that the instantons are centred at x1 and x2 respectively (cf. figure 4.12), and
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further that x1, x2 are well separated on the lattice. The most probable path of escape is

therefore via a saddle consisting of an instanton doublet centred about the two selected

sites. By solving the self–consistency condition for Z, the height of each instanton in the

doublet is found to be

q′0(µ) =
√

2
µ

µ̄

(
2−

√
4− µ̄

µ

)
with q′0 < q0 (4.37)

Figure 4.14 shows how the amplitudes of the single instanton, and a member of the doublet,

vary with the coupling strength µ. As expected, the continuum limit breaks down for small

µ.

The energy of the doublet (assuming that the local interaction energy of the two instantons

can be neglected) is

Ûd(µ) = 2F (q′0(µ), µ) + 8µq′0(µ)2 (4.38)

and the required barrier height is

δÛ(µ) = Ûd(µ)− Ûmin(µ) (4.39)

The inset to figure 4.14 demonstrates that the barrier height rapidly decreases with increas-

ing coupling strength, as expected. One consequence of this is that there appears to be

a trade–off between the strength of the local coupling, µ, and hence the network’s ability

to withstand damage, and its robustness to noise. Strong coupling (µ > 0.2) means that

information about an output state is dispersed over many neurons, making a resilient sys-

tem. However this also means that the barrier height between output states becomes so

small that noise induced transitions become important, even for low noise levels. Thus the

network is unable to function as a classifier.
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Figure 4.14: The variation of the instanton amplitudes, qo and q′0, with coupling strength

µ. The dashed curve shows the singlet amplitude, (equation (4.35)), the bold one shows

the doublet amplitude (equation (4.37)). Simulation results are also shown: results for the

singlet state are represented by a plus sign, and for the doublet state by a circle. Inset: The

variation of the barrier height with coupling strength µ is shown both analytically (solid line)

and numerically (circles).

4.6 Discussion

This chapter has been concerned with the role of noise in the perception of ambiguous

figures. To motivate my study I first reviewed the psycho–physics of this phenomenon,

and I then introduced Haken’s network, a possible model for this perceptual process. I

believe that Haken’s model provides a useful toy model for mental categorization tasks in

the same way that the Hopfield model, though biologically implausible, is a viable metaphor

for associative memory.

Two sets of experiments show that stochastic resonance can be present even at this cognitive

level. By the incorporation of weak noise and a sub–threshold driving signal I have extended
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Haken’s treatment first to account for SR, and then incidentally to explain the distribution

of spontaneous reversals.

In common with many mathematical models, Haken’s network admits more than one inter-

pretation. When a diffusive coupling is included in the dynamics, the ground states become

de–localized and the network becomes more robust. Related competitive networks have

previously been used as models of cortical function, and so I have proposed that Haken’s

network might also function as a low level model for recognition. Stochastic resonance per-

sists even in the presence of this diffusive coupling, and I therefore suggest that perceptual

SR might originate from the dynamics of either single neurons, or small groups of neurons.

Despite superficial similarities, the behaviour of Haken’s model must be distinguished from

array enhanced stochastic resonance [LMD+95] which is a noise induced phase locking phe-

nomenon. My analysis has shown that for small diffusive coupling the stochastic Haken

model can be approximated by a bi–stable system and thus has more in common with

traditional SR models.

The main results of this chapter were published in [BR98].



Chapter 5
Neuronal dynamics with intrinsic noise

5.1 A deterministic leaky–integrate–and–fire neuron

The neuronal spike train is largely determined by the membrane potential, V (t), at the

trigger zone (recall section 2.1.5). Recall: afferent excitatory and inhibitory PSPs are

summed in the soma, and a spike is fired if the total charge at the trigger zone exceeds

a threshold. Following excitation, the membrane slowly resets to its resting value, say V0,

and there is a refractory period during which the cell may receive input, but cannot fire. If

instead the PSP summation is sub–threshold, V (t) relaxes towards V0 without spiking.

5.1.1 Continuous time formalism

A simple model of the time course of V (t) is due to Lapicque [Lap07, Tuc88]. If the mem-

brane of cell i has a constant resistance Ri and a capacitance Ci, the Ohmic current through

it will be Vi/Ri and the current through the capacitance will be CidVi/dt. Therefore, by

conservation of current:

Ci
dVi

dt
= − Vi

Ri
+ Ii(t) (5.1)

102
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(compare with the full Hodgkin–Huxley model, section 2.1.5) where Ii(t) represents all

extra–cellular input currents. For convenience let κ = (RC)−1 and I ′i(t) = Ii(t)/Ci. I ′i(t)

has three contributions: any time–independent inputs or biases I0; external time–dependent

input IE(t) such as a physical stimuli; and time–dependent inputs from the other N neurons

of the network, IN (t) =
∑

Aij(t), so that

dVi

dt
= −κVi + I0 + IE(t) +

N∑

j=1

Aij(t) (5.2)

where Aij(t) is the input signal from the jth to the ith neuron. For the present assume

that there is no external input, and so IE(t) = 0. In the absence of other neuronal input

(IN (t) = 0), the neuron has a stable state corresponding to a resting potential at V0 = I0/κ.

There is no natural threshold for this model, and one must be imposed. A simple choice

is a variable threshold hi(t) that remains constant, hi(t) = hi, until Vi(t) > hi, at which

time a spike is fired. The effect of a refractory period is then included by setting hi(t) to

be infinite for a time tR after firing, after which it returns to its original value. A further

natural time–scale for the neuron is the synaptic delay td, which accounts for the finite

time between the arrival of a PSP and the resulting change in the membrane potential at

the trigger zone. Spikes have no structure in this model, but could be represented by any

suitable function, e.g. the alpha–function of [JNT75].

The output, âj(t), of the jth neuron at a time t is therefore some function of the its membrane

potential, Vi(t) and its threshold hi(t), so that

âj(t) = g (Vj(t)− hj(t)) (5.3)

For simplicity assume that a spike is well described by a delta function. Thus the time–

course of âj(t) becomes a set of delta functions, with one located at each firing time. This

signal propagates via the axon and telodendria to a synapse on the ith neuron. If the

finer details (e.g. ion channel processes) of dendritic and synaptic processing are ignored,

the resulting input signal, Aij(t), depends upon how this synapse modulates the impinging
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action potential. It comprises two parts: the original spike, âj(t), and a term ωij quantifying

transmitter release

Aij(t + td) = ωij âj(t) (5.4)

where a delay td has been included to describe the synaptic processing time.

In contrast with other leaky–integrator models, e.g. [GM64], the membrane potential is not

artificially reset to zero following firing. Discontinuous reset is known [RL93] to cause the

elimination desirable biological features such as positive correlations between inter–spike

intervals. Instead, therefore, V (t) decays exponentially during the refractory period.

5.1.2 Discrete time formalism

The ith neuron spikes for the nth time at T i
n , thus equation (5.4) may be written

Aij(t + td) = ωij

∞∑

n=1

δ(t− T j
n ) (5.5)

Subsequent neuronal firing times are determined by both the refractory period tR and the

synaptic delay td. Following the generation of an AP at T i
n , two possibilities may occur:

• the membrane potential remains above threshold after the refractory time and the

neuron spikes again, irrespective of its input

V (T i
n + tR) ≥ hi and T i

n+1 = T i
n + tR (5.6)

• after the refractory time, the membrane potential is sub–threshold and so is unable to

fire. The neuron therefore fires its next action potential at a time td after the arrival

of an afferent spike from another (say the jth) neuron at a time T j
l

V (T i
n + tR) < hi and T i

n+1 = T j
l + td (5.7)



5.1. A DETERMINISTIC LEAKY–INTEGRATE–AND–FIRE NEURON 105

note that T j
l + td > T i

n + tR since the neuron is unable to spike during a refractory

period.

The T i
n are therefore determined by the iterative condition

T i
n = inf{t|Vi(t) ≥ hi; t ≥ T i

n−1 + tR} (5.8)

and so

T i
n =

N∑

k=1

Aik
n T k

1 + Bi
ntR + Ci

ntd with Aik
n , Bi

n, Ci
n ∈ Z (5.9)

Thus, the firing times are distributed on a lattice spanned by tR, td, and the set of first

firing times, {T k
1 }. For convenience, set

td = tR = η (5.10)

and further choose initial conditions such that the first firing times are all integer multiples of

the delay, thus T j
1 = kη, ∀ j and for k ∈ Z. Thus, the discrete–time equation (corresponding

to (5.3)) for the output aj() at the mth time step is

ai(mη) = Θ [Vi(mη)− hi] (5.11)

where the step function Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 if x < 0, and so ai(mη) = 1 if

T n
i = mη for some n ≥ 1, and ai(mη) = 0 otherwise. Therefore, the neuronal input (5.4)

may now be written

Aij(t + η) = ωij

∞∑

m=0

δ(t−mη)aj(mη) (5.12)
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Following [BT91], a discrete time approximation to this Lapicque model may be constructed

by first solving equation (5.2), subject to the initial condition, V (0) = 0 (assuming IE = 0)

Vi(t) =
∫ t

0
ds




N∑

j=1

Aij(s− η) + I0


 exp (−κ(s− t)) (5.13)

=
I0

κ
(1− exp(−κt)) +

∫ t

0
ds

N∑

j=1

Aij(s− η) exp (κ(s− t))

In the absence of any other input, the first term on the RHS of equation (5.13) imposes

the exponential relaxation V → V0 . However, substitution of equation (5.12) into (5.13)

shows that the second term is completely specified by its solutions at the discrete times

t = mη, m ≥ 0. Thus, a natural discretization is to consider the evolution of (5.2) at

integer multiples of η

V (n + 1)− V (n) = η


−κV (n) +

N∑

j=1

Aij(n) + I0 + IE(n)


 n ∈ Z (5.14)

5.1.3 Single neuron dynamics

To illustrate the dynamics, consider the N = 1 case with no external input (IE = 0)

V (n + 1)− V (n) = η (−κV (n) + ωΘ [V (n)− h] + I0) (5.15)

which describes a single neuron with a self–coupling1, ω. Note that real neurons do not

synapse directly to themselves in this manner, but instead any such feedback is mediated

by one or more inter–neurons. For example, various sensory neurons are thought to receive

some form of active feedback: e.g. the hair cells of the auditory system [NK86]. Two

related single neuron approximations may be derived from the large network limit: Schieve

et al. [SBD91] assume that all other neurons in the network relax on a faster time–scale
1The bi–stable element represented by equation (5.15) has applicability outside the neural domain. It

has, for example, been used to describe an A/D converter [WC94].
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than does the ith neuron, and so adiabatically eliminate them to derive a single effective

neuron. In contrast, Ohira and Cowan [OC93] replace interactions from other neurons by

a self–consistent mean field, and show that this is equivalent to self–coupling.

For the moment assume that ω is time–independent, and that h = 0. If the self–coupling

is inhibitory (i.e. ω < 0) and I0 > 0 then the model (5.15) reduces to the Nagumo–Sato

equation [NS72]. Neuronal dynamics are therefore generated by a circle map, and exhibit

either periodic or quasi–periodic behaviour [ATT90, BS90]. If instead the self–coupling is

excitatory, so that ω > 0, and also I0 < 0 with ω + I0 > 0 then the deterministic dynamics

is trivial. Equation (5.15) has two stable fixed points

V1 =
I0

κ
and V2 =

I0 + ω

κ
(5.16)

with a basin boundary at V = 0. Consequently the neuron relaxes to one of two possible

equilibria: at V1 it is perpetually sub–threshold and never fires, while at V2 it is always

super–threshold and so fires at every time step.

5.2 Intrinsic noise

In the deterministic limit, a neuron with excitatory self–coupling displays trivial dynamics.

However, the inclusion of noise induces a richer behaviour. Single neuron models with addi-

tive [OC95] and multiplicative [BBJ89] Gaussian noise have been previously been studied.

Both of these models show qualitatively similar behaviour in their respective deterministic

limits, both exhibiting two stable fixed points.

Ohira and Cowan’s model The ad hoc inclusion of additive Gaussian white noise to the

model of Ohira and Cowan [OC95] induces a bi–modal stationary probability distribution.

The distribution is symmetric about some mean activation, and the peak widths increase

with noise strength.
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The single effective neuron In contrast, two such noise sources are included by Bulsara

et al. The self–coupling term includes multiplicative noise, and there is also an additive

Langevin term. It is found that the multiplicative noise both suppresses the bi–stable

nature of the underlying deterministic system, and also induces bi–stability in parameter

regimes where such effects would not otherwise be expected.

The motivation for inclusion of noise in both of these models is to aid the analysis of an

electronic model neuron due to Babcock and Westervelt [BW86, BW87]. Both the manner

in which noise is included, and also the interpretation of its effects therefore have weak

biological credentials. It is therefore interesting to consider what effect a more plausible

noise source might have on neuronal behaviour.

The sources of neuronal noise with the strongest influence on the firing dynamics are thresh-

old and synaptic (chapter 2):

5.2.1 Synaptic noise

Synaptic noise may be incorporated by taking the synaptic efficacy ω to be a random

variable ω(n) drawn at each time–step according to some probability distribution and also

according to the state of the neuron. The components of synaptic noise are (section 2.2.1)

a Poisson distributed vesicular release probability, and a Gaussian distributed vesicle size.

The probability of release due to an afferent AP is p, and in the absence of excitation it is

p′, with p′ ¿ p.

For simplicity set p′ = 0, and so neglect spontaneous fluctuations. Furthermore assume

that all quanta have the same size, say ω0, and that the synapse is excitatory (ω0 >

0). A synapse from the mammalian CNS typically contains less than ten vesicles [KF87].

Therefore consider the one–vesicle model of [Bre92], and assume that an incident action

potential can only cause the release of a single vesicle. Thus, if the neuron fires at the nth

time–step then ω(n) = ω0 with probability p and ω(n) = 0 with probability 1 − p; if the

neuron does not fire then ω(n) = 0 with probability 1.
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5.2.2 Threshold noise

Threshold noise is best modeled by making h a stochastic variable h(n), generated at each

time–step from a fixed probability density p(h). For tractability, I will approximate Lecar

and Nossal’s distribution of firing probabilities, P (V ), for a given excitation, V , [LN71b]

(recall section 2.2.3)

P (V ) =
1
2

[
1 + erf

(
V

S
)]

(5.17)

by a similar (but more tractable) sigmoidal firing probability, and so choose the threshold

at the nth time–step, h(n), to be drawn from the distribution

ρ(h) =
d
dh

(
1

1 + exp(−βh)

)
(5.18)

(this density has been shown [BT90] to reproduce the update rule for the Little model

[Lit74].) Therefore, the probability of firing for a given V is

P (V ) =
∫ ∞

−∞
ρ(h)Θ(V − h)dh =

1
1 + exp(−βV )

(5.19)

where β parameterizes the spread of the distribution2, and the mean threshold is 〈h(n)〉 = 0.

5.3 Stochastic dynamics

With the inclusion of noise, equation (5.15) becomes a stochastic difference equation of the

form

V (n + 1) = V (n) + ηFα(n)(V (n)) (5.20)

2A Taylor expansion of both (5.17) and (5.19) shows that the two distributions agree to first order when

β = −4/(S√π)
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where the index α = 0, 1 and Fα(n) = Fα with probability Φα(V (n)), so that

F0(V ) = −κV + I0 and F1(V ) = −κV + I0 + ω (5.21)

with respective probabilities

Φ0(V ) = 1− pP (V ) and Φ1(V ) = pP (V ) (5.22)

Equation (5.20) implies that the time course of V is specified completely by the random

symbol sequence {α(n), n = 0, 1...|α(n) ∈ {0, 1}} together with the initial value V (0).

Further note that the symbol sequence specifies the output spike train of the neuron. The

interval [V1, V2], with V1 and V2 given by equation (5.16), is an invariant domain of the

dynamics. If V (n) ∈ [V1, V2] then V (m) ∈ [V1, V2] ∀ m > n, and so if V enters the interval

it is confined there indefinitely.

The set {Fα, Φα|α ∈ {0, 1}} defines a random iterated function system (random IFS) on the

interval [V1, V2] [Bar95], and has been used by Bressloff [Bre92] to show that the stochastic

dynamics converge to a unique3 stationary probability density u∞(V ). An approximation

to u∞(V ) may be obtained by sub–dividing the V –axis into small intervals and plotting an

histogram of numerical iterates of equation (5.20).

5.3.1 Heuristic results

Assume for concreteness that I0 = −1
2pω0, which is half the mean transmitter release (this

choice will be explained later). Equation (5.16) therefore gives V1 ≤ 0 and V2 > 0. First

consider zero–synaptic noise, i.e. p = 1, and so V1 = −V2. In the limit β → ∞ the

deterministic limit is recovered and the neuron has two stable states, V1 and V2. As β is

decreased, these two states become de–localized with a stationary probability distribution
3For the system considered here, convergence to a unique u∞(V ) is guaranteed since it is Markovian and

so can be described by a master equation (see later). Such convergence may be proved by constructing the

entropy, which is a Lyapunov function for the dynamics [Rei98].
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that is bi–modal and symmetric about the origin. The peaks of the distribution are located

close to V1 and V2 and their widths depend on β (figure 5.1(a)).
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Figure 5.1: Approximations to the stationary probability distribution function u∞(V ) (bold

lines) obtained from numerical iterates of equation (5.20). β large: (a) zero synaptic noise

(p = 1), (b) non–zero synaptic noise (p = 0.8). The dashed lines show the corresponding

probability densities obtained from the Fokker–Planck analysis (section 5.3.2). Parameters

are: κ = 1 and ω = 1

Such a bi–modal distribution has a simple physical interpretation. Recall that the mean

threshold probability is 〈h〉 = 0. The negative maximum therefore represents a quiescent

state: the neuron remains close to its membrane resting potential and fires only rarely. The

mean firing rate is r = 1/〈P 〉 ≈ 1/ψ(V1), where 〈P 〉 is the mean firing probability. On the

other hand, the positive maximum corresponds to a de–polarized state. Here the neuron

has a high probability of firing, and if the neuron remains in this state for several time steps

it will fire regularly and thus exhibit bursting. Transitions from the negative to the positive

state are due to the neuron firing at least once whilst in the quiescent phase, and this in

turn is caused by the selection of a low threshold. The converse transition is caused by the

neuron failing to fire even though it is excited: the consequence of an high threshold. The

neuron spends little time in the transition region.

If the synaptic noise is now switched on, by decreasing p, the bi–modal probability density
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becomes asymmetric with a negative maximum that has a greater area than the positive

one (figure 5.1(b)). This asymmetry is caused by there now being two ways in which the

neuron can fail to receive excitatory input: either the imposition of a high threshold at the

previous time–step, or vesicle release failure. In this regime the neuron will therefore spend

most of its time in the silent state until a ‘rare’ event causes it to cross over to the bursting

phase.

However, in the limit β → 0 and p = 1 the firing probability is uniform at each time step,

with P (V ) = 0.5 ∀ V ∈ [V1, V2]. Therefore

F0(V ) = −κV − ω0

2
and F1(V ) = −κV +

ω0

2
(5.23)

with Φ0(V ) = Φ1(V ) = 0.5. Equation (5.20) therefore has two components: an exponential

drift term by which V tends to the origin, and a uniform random walk (of step–size (ηω0)/2)

which causes V to diffuse away from the origin. The stationary probability distribution is

therefore uni–modal and symmetric about V = 0 (figure 5.2). Now for p < 1, the random

walk becomes biased toward the negative, thus breaking the symmetry of the stationary

probability density (figure 5.2).

β is an order parameter for the dynamics. Hence there a critical value, say βc, such that for

β > βc the stationary probability distribution is bi–modal, while for β < βc is uni–modal.

5.3.2 Fokker–Planck analysis

An approximation to the stationary probability density u∞(V ) can be found analytically.

Define a probability density un(V ) on the sample space of membrane potentials V ∈ [V1, V2],

so that the probability of finding the membrane potential in some interval [a, b] at the nth

time–step is

Pn(a ≤ V (n) ≤ b) =
∫ b

a
un(V )dV (5.24)
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Figure 5.2: Approximations to the stationary probability distribution function u∞(V ) (bold

lines) obtained from numerical iterates of equation (5.20). β small: (a) zero synaptic noise

(p = 1), (b) non–zero synaptic noise (p = 0.4). The dashed lines show the corresponding

probability densities obtained from the Fokker–Planck analysis (section 5.3.2). Parameters

are: κ = 1, ω = 1, and β = 0.2

The noise introduced in section 5.2 lacks temporal correlation and so this system is Marko-

vian (see section 1.2 and appendix B.2). The probability density un(V ) therefore evolves

according to a Chapman–Kolmogrov (CK) equation (recall section 1.2)

un+1(V ) =
∫ V2

V1

φ(V |V ′)un(V ′)dV ′ (5.25)

where the transition probability φ(V |V ′) is the conditional probability that the system will

be found in state V given that it was in V ′ at the previous time step, and is given by

φ(V |V ′) =
∑
α

Φα(V ′)δ(V − V ′ − ηFα(V ′)) (5.26)

recall (equation 1.12) that in the limit η → 0, the discrete–time CK equation may first be

transformed to a continuous–time master equation, and then (by way of the Kramers–Moyal
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expansion – section 1.3) to a Fokker–Planck equation:

∂

∂t
u(V, t) = − ∂

∂V
D(1)(V )u(V, t) +

1
2

∂2

∂V 2
D(2)(V )u(V, t) (5.27)

where the drift and the diffusion coefficients D(1) and D(2) are the first and second moments

of δV (n) = V (n + 1)− V (n) (recall equation (1.24))

D(1)(V ) = η [ω0pP (V )− κV + I0] (5.28)

D(2)(V ) = η2
[
[I0 − κV ]2 + ω0[ω0 + 2I0 − 2κV ]pP (V )

]
(5.29)

The 1–dimensional Fokker–Planck equation has a unique stationary solution, ust(V ), which

satisfies

− ∂

∂V
D(1)(V )ust(V ) +

1
2

∂2

∂V 2
D(2)(V )ust(V ) = 0 (5.30)

Define the stationary probability current J (V ), such that

J (V ) =
(
−D(1)(V ) +

1
2

∂

∂V
D(2)(V )

)
ust(V ) = constant (5.31)

V1 and V2 are reflecting boundary conditions and so

J (V1) = J (V2) = J (V ) = 0 (5.32)

therefore ust(V ) has the form (recall section 1.3.1)

ust(V ) = N exp(−Ξs(V )) (5.33)

where N is a normalization constant such that

∫ V2

V1

ust(V ) = 1 (5.34)
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and Ξs(V ) satisfies

Ξs(V ) = lnD(2)(V )− 2
∫ V

V1

D1(V ′)
D2(V ′)

dV ′ (5.35)

ust(V ) is the Fokker–Planck approximation to the true stationary density u∞(V ), and the

function Ξs(V ) is an effective potential function for the dynamics. Comparing ust(V ) with

the histogram of iterates of (5.20) shows that this Fokker–Planck approximation describes

well the qualitative and quantitative aspects of the stochastic dynamics (figures 5.1 and

5.2).

5.4 Noisy dynamics in an effective potential

The notion of an effective potential function allows an intuitive description of the neuronal

dynamics. More importantly it also permits prediction of the critical value βc.

5.4.1 Deterministic sub–system and the critical temperature

An estimate of βc (and also a motivation for the choice for I0) may be found by considering

the stochastic system (5.20) as comprising an underlying deterministic trajectory which is

perturbed by small fluctuations. Such an intuitive picture forms the basis of van Kampen’s

‘small fluctuations expansion’ [vK76, vK92].

A deterministic system obeying gradient dynamics has the potential function [vK92]

Ud(V ) = −
∫

V
D(1)(V ′)dV ′ (5.36)

with D(1)(V ) given by equation (5.28). First note the identity:

1
1 + exp (−βV )

≡ 1
2

(
1 + tanh

(
βV

2

))
(5.37)
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Thus the deterministic potential function (5.36) is

Ud(V ) = −
∫

V

[
w0pP (V ′)− κV ′ + I

]
dV ′ (5.38)

= −
∫

V

[
w0p

2
tanh

(
βV ′

2

)
− κV ′ +

(w0p

2
+ I0

)]
dV ′

The stationary points of Ud(V ) satisfy D(1)(V ) = 0. This yields an equation identical in

form to the Weiss mean field equation for an Ising ferro–magnet at a temperature T ′ = 2/β

and subject to an external magnetic field (I0 + 1
2pw0), see e.g. [CL95].

The stationary points can be determined graphically from the intercepts of the straight line

y = κV + I0 +
1
2
w0p (5.39)

with the sigmoid

y =
1
2
w0p tanh

(
βV

2

)
(5.40)

When I0 = −1
2w0p the dynamics displays a phase transition at the critical value βc =

(4κ)/(w0p). Below βc there is a single intercept at V = 0 and Ud(V ) has a single minima.

However, above βc there are three intercepts: one at V = 0 and two others symmetrically

arranged about the origin, and so Ud(V ) is bi–stable (figure 5.3(i)). If instead, I0 6= −1
2w0p

then the intercepts (and hence the stable states) become shifted along the V –axis (figure

5.3(ii)). In fact, a large enough I0 can also induce a phase transition.

5.4.2 The effective potential

The membrane potential of the neuron therefore executes a random walk in an effective

potential that is sculpted by the noise parameters. Synaptic noise, p, breaks the symmetry

of Ξs(V ) (figure 5.4(b)), while threshold noise, β, determines δΞ(β): the height of the

barrier between the minima. As β is increases, so too does δΞ (figure 5.4(a)).
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Figure 5.3: Ground states of the deterministic sub–system are determined by the intercepts

between y = κV + I0 + 1
2w0p and y = 1

2w0p tanh
(

βV
2

)
. (i) I0 = −1

2ω0p: (a) β > βc and Ud

is bi–stable (the ferromagnetic phase), (b) β = βc, (c) β < βc and Ud is mono–stable. (ii)

β > βc: (d) I0 < −1
2ω0p (e) I0 = −1

2ω0p (f) I0 > −1
2ω0p.

Consider a fixed synaptic noise, with p 6= 1, and β > βc, such that the effective potential

is asymmetric and bi–stable. There are two natural time–scales for these dynamics: the

mean escape time from the negative global minimum (the silent state) via the barrier δΞ12

to the positive meta–stable state (the bursting state); and the mean time for the converse

transition over δΞ21 (figure 5.4(b)) and both of these time–scales will exhibit an Arrhenius4

dependence on their respective barrier heights. Following the bursting paradigm, these

two times may be identified with the mean inter–burst interval and the mean burst length

respectively. The inter–burst interval therefore depends solely on β and so is solely due to

threshold noise, while the burst length is a function of both p and β, and so is determined

by both threshold and synaptic noise.

Spike trains obtained from numerical iterates of equation (5.20) confirm this picture. There

are long periods during which the neuron fires only occasionally, and at times that are

separated intervals of order 1/P (V1). Even rarer are the highly correlated bursts of spikes
4Unfortunately, a Kramers’ rate (section 1.4) is not computable since it requires derivatives of the po-

tential, and Ξ(V ) is obtained from numerical integration of equation (5.35) (see appendix B).
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Figure 5.4: The effective potential for various noise strengths: (a) zero synaptic noise

(p = 1) but varying threshold noise (β). (b) constant threshold noise (β = 6.0), and varying

synaptic noise.
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that signify occupation of the depolarized state. The occasional spikes should be considered

as spurious background activity, but the bursting states are much more significant. (For

example, recall that in chapter 3, bursting was shown to be a useful coding for temperature.)

Therefore, how are these bursts distributed in time? An analogous measure to the inter–

spike interval histogram is the inter–burst interval histogram (IBIH). Assuming that the

time spent in the transition region of Ξ is small, this may be found numerically from a large

number of trials, each of which consists of taking the initial point V (0) = V1 and iterating

equation (5.20) until V (n) ≈ V2 for the first time.

If the neuronal input is constant, such a distribution is uni–modal with an exponential tail

(figure 5.5).
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Figure 5.5: Histogram of escape times (the IBIH) for an asymmetric, bi–stable neuron with

constant input.

5.5 Periodic Modulation and Response

Bulsara et al. [BJZ+91] have used both analysis and analog simulation to demonstrate that

their single effective neuron model will exhibit SR when subject to weak periodic forcing.
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To look for commensurate behaviour in this one–vesicle model, first introduce a weak,

periodically modulated external input

IE(n) = ξ sin(Ωn) (5.41)

subject to the adiabatic approximation

2π

Ω
À 1 (5.42)

so that equation (5.20) becomes

V (n + 1) = V (n) + η (Fα(V (n)) + ξ sin(Ωn)) (5.43)

where the {Fα(V (n))} are defined by equation (5.21). Furthermore, to ensure that IE alone

is too weak to switch the neuron between quiescent and bursting states, impose

ξ ¿ w0

κ
(5.44)

In chapter 3 such input was associated with a slowly oscillating autocatalytic calcium cur-

rent, but it has a wider range of applicability [Lán97]. For example: a sinusoidal tone

applied to an auditory neuron [LBM91]; a periodic tactile stimulus [CIG96]; or even the

action of a single pacemaker neuron [CBGC96].

Computation of the IBIH5 for various values of threshold noise shows that the escape times

from the resting state V1 can become partially entrained to the periodic signal. The typical

multimodal distribution is again apparent: peaks occur at integer multiples of the driving

period, and with exponentially decaying heights (e.g. figure 5.6).
5These histograms are obtained by iterating the neuron equation, (5.20), for a fixed time (of the order of

10 times the forcing period). If the neuron switches into a bursting state then the switch time is noted, if it

does not switch within this time then a null result is noted. The neuron is then reset to the quiescent state

and restarted. This process is repeated many times to obtain reasonable histograms.
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Consider how this entrainment is affected as the noise parameter β is swept through its

range. Note first that the condition of maximal threshold noise occurs when β → 0, and

furthermore that the deterministic limit derives from β → ∞. For β low (i.e. high noise),

δΞ12 is small and all transitions occur within the first cycle of driving. As β increases (i.e.

the noise decreases), then so too does δΞ12 and higher sub–harmonics of the driving appear.

As β →∞ (deterministic limit) the forcing becomes impotent and escape is prevented.
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x 10
4
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Figure 5.6: An inter–burst interval histogram for the one–vesicle model subject to weak

periodic driving.

A plot of the area6 of each peak versus β, shows a set of resonance conditions: for each

peak k, there is a value of β, say β k
max, for which the peak area is maximal (figure 5.7). For

β ≈ β1
max, the noisy transition rate is comparable to the driving period, and so escape is

maximally synchronized to the signal.
6The area is computed according to Gammaitoni’s prescription [GMS95] (equation (1.48))
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Figure 5.7: The variation in area under the first four peaks of the IBIH, versus increasing

threshold noise. Parameters are: κ = 0.5,ω = 0.5, Ω = 0.05 and A = 0.05.

5.6 Discussion

To conclude, I have shown that a simple stochastic model of a spiking neuron can exhibit a

much richer discharge than can its deterministic counterpart. For certain parameter values

the neuron can burst, with burst lengths and inter–burst intervals that are Poisson dis-

tributed. I have demonstrated that the bursting dynamics may be described by a random

walk of the membrane potential in a (possibly asymmetric) bistable potential. I have iden-

tified the two minima of this potential with the bursting and quiescent states, and I have

shown that noise can cause transitions between these two states. The noise parameters, β

and p, therefore tune the discharge pattern. Threshold noise controls the forward transition

(i.e. from quiescence to bursting), and hence determines the inter–burst interval. In con-

trast, the backward transition (from bursting to rest – i.e. the burst length) is determined

by both threshold and synaptic noise. I have further shown that when the cell is driven

by a weak periodic signal the bursting dynamics become stochastically phase–locked to the

forcing, and the neuron exhibits a form of stochastic resonance.
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There are obvious limitations to this work: restriction to a single neuron model with feed-

back has aided the analysis, but represents an extreme oversimplification. However, it is

plausible that the feedback mechanisms present within some real neuronal networks may

initiate equivalent behaviour. A further difficulty arises from the imposition of the adia-

batic condition (5.42). The slow signal is necessary to ensure the system remains near an

equilibrium state, and therefore the validity of the analysis. However, the long time pe-

riod means that the residence times in the bursting state, and hence burst lengths, become

unrealistically long: of the order of several hundred spikes per burst.

It should be noted that this choice for the probability distribution for threshold noise, while

simplifying the analysis, is not crucial to the behaviour discussed here. Any sigmoidal

density will behave comparably.

The main results of this chapter are to appear in [BR99].



Chapter 6
Conclusions

“ ‘I have done that,’ says my memory. ‘I cannot have done that’ says my pride,

and remains adamant. At last – memory yields.”

Nietsche

It has been said that a thesis is never finished . . . but is only ever abandoned, and unfor-

tunately this work subscribes to that sentiment. It is inevitable that the completion of any

piece of work (almost) always suggests a myriad of ways in which it might be continued.

With this in mind, after first summarizing what I have achieved, I want to take the time to

indicate some ways in which my work should be extended.

Chapter 1: contained some of the necessary mathematical and physical background to this

thesis. Specifically I discussed what noise is, and how it may be treated mathematically. I

introduced briefly the Langevin equation and discussed its connection to the master equation

and to the Fokker–Planck equation. I then showed how to compute the mean rate of escape

of a noisy particle from a meta–stable state. I completed the chapter with a brief review of

stochastic resonance.

Chapter 2: was a review of the biology of neurons, and a brief summary of the Hodgkin–

124
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Huxley model for action potential generation. I then discussed what various sources of noise

contributed to the neural dynamics.

Chapter 3: presented my studies on cold–receptor function. I first showed that complex

ionic models could (in the spirit of Ermentrout and Kopell [EK86]) reduce to canonical

phase–models which possess qualitatively similar dynamics. I then investigated the phase–

model (both numerically and analytically) in the deterministic regime and also when subject

to a finite amount of thermal noise. I showed that numerically obtained spike trains and

inter–spike interval histograms from the phase model agree well with the experimental

data. By way of Floquet analysis and the Mathieu equation, I showed that the temperature

dependence of the discharge pattern of these cells might be viewed as a trajectory through

the mode–locked solutions of a Strutt map. My investigations also suggest that skipping

might be caused by noise and I indicated how both the number of spikes in a burst, and

also the skipping rate at any given temperature may be predicted. I studied how altering

the noise level affects the dynamics and I showed that the skipping regime may be sub–

divided: the first part of skipping is caused by noise–induced trapping and the second part

is due to noise–induced spiking. Finally, I demonstrated that the phase–model displays a

non–monotonic dependence on noise strength, and in fact exhibits both resonant trapping

and autonomous stochastic resonance.

Chapter 4: Here I turned to the problem of the perception of ambiguous figures. I first

reviewed the psycho–physics of how such figures are interpreted by the brain, and I discussed

two experiments that indicate that stochastic resonance might occur at a cognitive level.

I proposed Haken’s winner–takes–all network as a model for the interpretive process and

showed how it might be extended to model the phenomena of reversal. I then investigated

how Haken’s model might elucidate a mechanism for cognitive stochastic resonance. I then

turned to the diffusive Haken model (due to Schmutz and Banzhaff [SB92] and Bressloff

[Bre95, Bre97]) a model previously proposed to explore how the neural substrate might

perform pattern recognition. I showed how this network could also support stochastic

resonance but that there was a trade off between the strength of the diffusive coupling

between neurons (a factor that determines the network’s robustness to the loss, or ‘death’,
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of individual cells) and the amount of noise that the network could support.

Chapter 5: in this chapter I showed how specific noise distributions for synaptic and

threshold noise might affect neuronal dynamics. To obtain a framework for the inclusion

of noise, I first indicated a method by which the dynamics could be discretized. I then

investigated these discrete dynamics first via a master equation and subsequently by means

of a Fokker–Planck equation. Using these techniques I was able to show that (for certain

parameter regimes) this system may be interpreted as evolving in a generalized bistable

potential. I identified residence of the excited stable–state with bursting, and residence of

the negative stable–state as being a time of quiescence. I then presented numerical results

to show that in the absence of any external input, transitions between these two states,

and hence inter–burst intervals, are exponentially distributed. I completed my study by

showing that the introduction of a weak, periodic input could (stochastically) entrain the

neuron in a manner that is related to stochastic resonance.

Without re–iterating the conclusions of previous chapters, a ‘wish–list’ of future projects

and unsolved problems include:

• In this thesis (with the exception of chapter 5) I have considered additive, Gaussian

noise. However, as discussed in chapter 1, such noise is a mathematical fiction, and

so the most obvious extension to this thesis would be to consider how coloured–noise

sources (see e.g. [HJ95]) might change the neural dynamics.

• I feel that my work on cold–receptor function holds promise for a deeper understanding

of the operation of these cells. However, to achieve this, a concrete identification

between the parameters of the model and those of real cells need to be made. Longtin

[RBL98] has made some headway with this, but more needs to be done.

• There are few published numerical1 techniques for obtaining general solutions to the

time–dependent Fokker–Planck equation (recall section 3.4.2). Numerical algorithms

for the solution to such partial differential equations is a large area of research, and is

beyond the scope of this thesis, but this is definitely something that requires attention.
1Nor are there any analytic approximations.
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• Recalling that skipping in the cold–receptor model may be interpreted as a noise–

induced crossing of the j = 0 and j = 1 tongue boundary of the Strutt map. An

alternative strategy for computing the skipping rate might therefore be to find the

mean first–passage time for this transition (in terms of the variables, a and q, of

equation (3.24)).

• Stochastic resonance (in the bona–fide sense as discussed in section 1.5) demands that

the time–scale matching relation equation (1.46) be fulfilled. However, I have not

yet been able to prove an equivalent relation for resonant trapping and autonomous

stochastic resonance in the cold–receptor model close to its saddle–node bifurcation.

Such a relation first requires that the velocity of a noise–induced passage through

a bifurcation be evaluated, and a possible technique for this has been suggested by

Sigeti [Sig88].

The most compelling lesson from my work has been to glimpse at the richness of the

interaction between noise and dynamical systems. However, much of the current neural

computing literature falls into either the deterministic camp (i.e. investigations of purely–

deterministic neural dynamics2 such as those described in [HI97]), the neural–coding and

information–theoretic camp (e.g. the book by Rieke et al. [RWdRvSB97]) or what might

be termed the mean–field camp (i.e. those that consider noise in large networks, e.g. the

replica–symmetric standpoint of [Ami89]). Although all of these approaches are extremely

valid, there little cross–over between them. It is particularly salutatory that the amongst

the many references to noise in the index of Arbib’s exhaustive compendium [Arb95], there

is no entry pertaining to neuronal noise in the sense considered here. One notable exception

to my classification is of course the recent interest in stochastic resonance in neural systems,

however this phenomena (SR) is only a small part of the larger field of ‘noise in dynamical

systems’ and there is much of the latter that has a wide applicability for neural modellers.

2In this category I include treatments of, for example: synchronization phenomena, ion channel models,

and chaos in neuron models.



Appendix A
A Few Theorems

A.1 Floquet’s theorem

Floquet’s theorem:1 The regular system

ẋ(t) = Q(t)x (A.1)

where the coefficient Q is periodic with minimal period T , has at least one non–trivial

solution x = X(t) such that

X(t + T ) = CX(t), −∞ < t < ∞ (A.2)

where C is a constant

Proof: [JS87, Gle94] first integrate (A.1), so that

X(t) = X0 exp
(∫ t

0
Q(s)ds

)
(A.3)

1I present here the scalar case, however generalization to more than one variable is straightforward.
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thus obtaining the fundamental matrix Ψ(t) = exp
(∫ t

0 Q(s)ds
)
, with X(t) = Ψ(t)X0.

Furthermore, note that the integral may be split into

∫ t+T

0
Q(s)ds =

∫ T

0
Q(s)ds +

∫ T +t

T
Q(s)ds (A.4)

and so

Ψ(t + T ) = exp
(∫ T

0
Q(s)ds

)
exp

(∫ T +t

T
Q(s)ds

)
(A.5)

but since Q(t) = Q(t + T ), we have

∫ T +t

T
Q(s)ds =

∫ t

0
Q(s)ds (A.6)

and therefore

Ψ(t + T ) = Ψ(T )Ψ(t) (A.7)

and since T is fixed, C = Ψ(T ) is a constant, and so we have the required periodic solution.

Furthermore, also note

Ψ(nT ) = Ψ(T )n (A.8)

The number

Ψ(T ) = exp
(∫ T

0
Q(s)ds

)
= exp(ρT ) (A.9)

is called a Floquet multiplier, while ρ is called a Floquet exponent. Note that ρ is only

defined up to a constant

ρ =
1
T log(Ψ(T )) +

2nπi

T n ∈Z (A.10)
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x = 0 is a stationary point of the system, to investigate its stability define

p(t) = Ψ(t) exp(−ρt) (A.11)

thus

p(t + T ) = Ψ(t + T ) exp (−ρ(t + T )) = Ψ(t) exp (−ρt) = p(t) (A.12)

and so p(t) is periodic and bounded, and the solution may be written

X(t) = Ψ(t)X0 = p(t) exp(ρt)X0 (A.13)

and so if Re ρ < 0 the solutions decay, while for Re ρ > 0 they are unbounded.
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A.2 Multistability in networks of weakly coupled bistable units –

the anti–continuum limit

The stationary states of a network of weakly–coupled bistable units can be shown to be

analytic continuations of the stationary states of the network in its de–coupled limit. Fol-

lowing MacKay and Sepulchre [MS95] consider a large (and possibly infinite) network of N

bistable oscillators. Suppose that the ith oscillator is described by a state variable xi and

that in the absence of any other oscillator, it evolves according to

ẋi = f(xi) (A.14)

where the function f(. . .) is C1 and has two stable states corresponding to xi = x(n),

(n = 1, 2).

The state of the network may be written as the N–dimensional vector X, with components

xi, (i = 1, . . . N). X is assumed to evolve according to

Ẋ = F (X) + µK(X) ≡ G(X, µ) (A.15)

where F is the map

F (X) = (f(xi))i∈N (A.16)

K(. . .) is some C1 function that describes interactions between units, and µ describes the

strength of the coupling.

When µ = 0 the network exhibits 2N stationary states X(j)
0 , (j = 0 . . . 2N ), each of which

satisfy F (X(j)
0 ) = 0, and hence also G(X(j)

0 , 0) = 0. As a consequence of the implicit

function theorem (see e.g. [Gle94]), the zero (X(j)
0 , 0) of G has a local continuation (termed

the anti–continuum limit [Aub95]) about µ = 0 if (i) G is C1 and (ii) the Jacobian of G



A.2. MULTISTABILITY IN NETWORKS OF WEAKLY COUPLED BISTABLE
UNITS – THE ANTI–CONTINUUM LIMIT 132

(taken with respect to X) is invertible at (X(j)
0 , 0) with a bounded inverse. These continued

solutions are therefore delocalizations of the original ground states X(j)
0 .

A.2.1 Continued solutions of the diffusive Haken model

With reference to the diffusive Haken model discussed in chapter 4, denote the state of the

network by Q(µ,Z) where Z ≡ Z(µ) is now implicitly a function of the coupling strength

µ. Stationary states satisfy

(1− 2Z)qi + q3
i + µ

∑

<j,i>

(qj − qi) ≡ [G(Q,µ,Z)]i = 0 (A.17)

where Z is determined self–consistently from (equation (4.9))

Z(q) =
∑

i

q2
i (A.18)

The introduction of this self–consistency complicates the stability of the continued solutions.

First consider Z fixed, e.g. Z ≡ Z0, such that Z0 > 1
2 , and for µ = 0 the equilibria of (A.17)

satisfy

q̄i = 0 or q̄i = ±
√

2Z0 − 1 6= 0 (A.19)

(if negative solutions are included). Denote the Jacobian ∂G/∂Q by δG. Since

[
δG(Q̄, 0,Z0)

]
ij

= δi,jχi (A.20)

where Q̄ ≡ Q(0,Z0) is a zero of G(. . .), χi = −(2Z0 − 1) if q̄i = 0 and χi = 2(2Z0 − 1)

if q̄i 6= 0. δG is invertible at the stationary point (Q̄, 0,Z), and so from the implicit

function theorem (IFT) there exists a sufficiently small coupling µ for which there exist

local continuations of each Q̄ [Bre95].
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Now let Z be no longer fixed, but instead determined by the self–consistency condition

equation (A.18) (equation (4.9). By a second application of the IFT it is possible to show

[Bre95] that there exists µ0 such that for |µ| < µ0, there is a locally unique continuation of

Z(µ) and of the network state Q(µ,Z(µ)) such that

δG (Q(µ,Z(µ)), µ,Z(µ)) = 0 (A.21)

and so these continued states are also delocalizations of the original ground states of the

network.



Appendix B
Numerical Issues

“The purpose of computing is insight, not numbers.” [Ham73]

All of the numerical data in this thesis derives from software written by myself in C. Data

was analysed with both MATLAB (version 4.2) and with Microsoft EXCEL (version 7). The

Mathieu functions in chapter 3 were computed with MATHEMATICA (version 3.0), and the

generalised potential (equation (5.35)) in chapter 5 was numerically integrated with MAPLE

(version V release 4), using their proprietary algorithms.

B.1 Random and pseudo–random number generators

For a working definition of randomness, consider the sequence of numbers R = {xn}, with

xn ∈ [a, b] ∀n. R is called a random sequence (or sequence of uniform deviates) if:

(i) every element of R is independent of every other element

(ii) the elements of R are equi–distributed on the interval [a, b].

134
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Computer generated random numbers are rarely truly random, since there’s usually a trade–

off between computational efficiency and how ‘random’ a sequence must be for a given task.

Thus, computer generated random numbers are more properly called pseudo–random. There

is no ‘best’ random number generator (RNG) and in fact the ANSI1 standard for the C

language merely gives an example of an RNG. Thus, RNG implementations are usually

machine and compiler dependent. A typical algorithm is the linear congruential generator,

which generates a sequence of numbers according to

xn+1 = axn + c (mod m) a, c,m ∈ Z+ (B.1)

where a, c, and m are called the multiplier, the increment and the modulus, respectively.

Random numbers are generated by supplying an initial ‘seed’, x0, (e.g. an integer composed

from a reading of the system clock) and iterating the generator. However, since m is an

integer, the generator is actually periodic with maximal2 period m. In consequence, poor

implementations of (B.1) (e.g. those with small values of m) can give dangerous results3.

An even simpler RNG is the simple multiplicative congruential (SMC) algorithm

xn+1 = axn (mod m) a,m ∈ Z+ (B.2)

provided that a and m are chosen very carefully and that x0 6= 0, then this generator can

perform as effectively as, and is generally faster than, most other algorithms [PTVF92].

Park and Miller [PM88] recommend

a = 75 and m = 231 − 1 (B.3)

which has a period of 231 − 2 ≈ 2.1× 109.
1American National Standards Institute
2(B.1) has its maximal period when m is prime.
3[PTVF92] is particularly scathing about how such generators are implemented (note the emphasis on

implementation) in most commercial compilers.
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However, there is a complication when using the SMC algorithm to create a sequence of

random numbers. First note that successive iterates of (B.2) differ only by a multiple of

∼ 1.7× 104 (out of a total modulus of ∼ 2.1× 109). Thus when the SMC generates a very

small number, its immediate successor in the sequence will be another small number. For

example, if the SMC algorithm returns xj = 10−7, then xj+1 will be of order 1.7× 10−3.

Such sequential correlations can be removed by means of a shuffling algorithm due to Bays

and Durham (see e.g. [PTVF92]). When the RNG algorithm is first called, the shuffle

routine creates a table of, say 32, random numbers (see figure B.1). Although the elements,

bi, of the table will be serially correlated, an un–correlated sequence may be created by

selecting members at random from the table. The method proceeds as follows: each time

the algorithm is called, the random number b0 is used to choose an element, say b4, from

the table which is then output. b4 is now copied into b0 for use during the next iteration,

and a new element b4 is created by the RNG.

B.1.1 Transformation methods and non–uniform deviates

Uniform deviates are all well and good, but random numbers drawn from other distributions

are required more frequently.

To transform one distribution into another [PTVF92], consider first the function y(x) of the

uniform deviate x. If x has a probability density p(x), then if y(x) will have a probability

density

p(y) = p(x)
∣∣∣∣
dx

dy

∣∣∣∣ (B.4)

However, for a uniform deviate on the interval (0,1)

p(x) dx =





dx if 0 < x < 1

0 otherwise
(B.5)

therefore, any arbitrary distribution of y’s, say p(y) = F(y), can be found from solving
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Figure B.1: The Bays and Durham shuffle algorithm for removing serial correlations in

a sequence of iterates of the simple multiplicative congruential generator (equation (B.2)).

Each time the algorithm is called, the random number b0 is used to choose an element,

say b4, from the table which is then output. b4 is now copied into b0 for use during the

next iteration, and a new element b4 is created by the RNG (see e.g. [PTVF92]). [After

[PTVF92]].

(B.4), subject to (B.5), so that

x = F (y) =
∫ y

0
F(y)dy (B.6)

and so the transform from a uniform distribution to an arbitrary one is given by

y(x) = F−1(x) (B.7)

provided the inverse of F , F−1, exists.

This procedure has an intuitive geometrical interpretation [PM88] (figure B.2). Note first
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that F (y) is the area to the left of y under the distribution curve F(y). Therefore, the

procedure is to pick a uniform deviate x and then to find the value y corresponding to a

fraction x of the area to the left under the distribution curve.

0

1

�

�

�������	
���
��

��������
	

������
�

�
�����

����

	
���
��

Figure B.2: Geometric interpretation of the transformation method for generating non–

uniform deviates. Given a uniform deviate, x, and a (non–uniform) distribution, F(y), the

required non–uniform deviate, y, is the point corresponding to a fraction x of the area to

the left under the distribution curve. [After [PTVF92]].

Normal deviates and the Box–Muller algorithm

The transformation method generalizes to more than one dimension, and is used in an

efficient algorithm (due to Box and Muller – see [PM88]) for generating normal deviates.

step 1 Generate two deviates distributed uniformly on the unit circle. This may

be achieved by first transforming two iterates, xi (i = 1, 2), of the LCM generator, so

that (2xi − 1) → zi. If Z ≡∑
i z

2
i ≥ 1 then these two are rejected, two new xi are

generated and the process is repeated.

step 1 The Box–Muller transformation. The two deviates, zi, are now transformed to

normal deviates according to

y1 = z1

√
−2 ln(Z)

Z
and y2 = z2

√
−2 ln(Z)

Z
(B.8)
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B.2 Numerical simulation of noisy dynamical systems

Consider the stochastic differential equation (SDE)

d
dt
X (t) = F (X , t) + η(t) (B.9)

where η(t) is a zero–mean white noise process4. The random process X (t) is Markovian

[Gil96a], and so

(i) X (t + dt) depends solely on t, dt and X(t), i.e. X (t) has no memory.

(ii) the increment

D(dt;X (t), t) = X (t + dt)−X (t) (B.10)

is a smooth function of its arguments.

(iii) X (t) is a continuous function of t, in the sense that D(dt;X (t), t) → 0 as dt → 0,

∀ x, t.

To numerically integrate an SDE, one must first decide upon a satisfactory discretization

[Gil96a]. First write (B.9) as an integral equation

X (t + ∆t) = X (t) +
∫ t+∆t

t
F (X , t)dt +

∫ t+∆t

t
η(t)dt (B.11)

in the absence of the last term, a simple Euler scheme could be used. Setting the time–step

∆t to be small but finite, (B.11) would therefore become

Xm+1 = Xm + Fm∆t

4Any non–zero mean, i.e. 〈η(t)〉 ≡ η̄ 6= 0, can be can be incorporated into the function F (x, t) to leave

the zero–mean process η′(t) = η(t)− η̄.
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where

Xm ≡ x(t) |t=t′ , Xm+1 ≡ X (t) |t=t′+∆t and Fm ≡ F (X , t) |t=t′

However, since η(t) is non–differentiable, care must be taken when discretizing the cor-

responding random process. Consider first dividing the interval [t, t + ∆t) into n > 1

sub–intervals of equal length ∆t/n such that ti = t + i(∆t/n), (i = 0 . . . n). We then have

X (t + ∆t)−X (t) = X (tn)−X (t0) =
n∑

i=1

[X (ti)−X (ti−1)] (B.12)

=
n∑

i=1

[X (ti−1 + ∆t/n)−X (ti−1)] (B.13)

≡ D(∆t;X (t), t)

therefore

D(∆t;X (t), t) =
n∑

i=1

D(∆t/n;X (ti−1), ti−1) (B.14)

As a consequence of conditions (i) and (ii) (above), ∆t can be made so small that all of the

ti’s are arbitrarily close to t. Thus, to lowest order in ∆t we can replace

ti−1 → t and X (ti−1) → X (t) ≡ x (B.15)

and so, to lowest order in ∆t and for all n > 1,

D(∆t; x, t) =
n∑

i=1

Di(∆t/n; x, t) (B.16)

and from the Markov condition (i) above, the Di() are n statistically–independent copies

of the random variable D(∆t/n; x, t). Furthermore, the mean and variance of each of the

Di() are finite due to condition (iii). Therefore, if n is allowed to become arbitrarily large,
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the central limit theorem may be invoked to show that the sum D(∆t;X (t), t) is normally

distributed. Furthermore, so too are the n statistically–independent random quantities

D(∆t/n;X (t), t). Thus, the mean and variance are given by

〈D(∆t;X (t), t)〉 =
n∑

i=1

〈Di(∆t/n; x, t)〉

= n× 〈D(∆t/n; x, t)〉 (B.17)

〈D2(∆t;X (t), t)〉 =
n∑

i=1

〈D2
i (∆t/n; x, t)〉

= n× 〈D2(∆t/n; x, t)〉 (B.18)

Now, a smooth function h(y) can only satisfy h(y) = n× h(y/n), ∀ n ∈ Z+ if it is a linear

function of y, i.e. h(y) = By where B is a constant. Thus

〈D(∆t;X (t), t)〉 = A(x, t)∆t

〈D2(∆t;X (t), t)〉 = D(x, t)∆t (B.19)

therefore, since D() is normal,

D(∆t;X (t), t) = N (A(x, t)∆t,D(x, t)∆t) ≡ A(x, t)∆t +
√

D(x, t)∆t N(0, 1) (B.20)

and so the noise term is proportional to the square root of the time–step. The discretization

therefore becomes

Xm+1 = Xm + Fm∆t + ηm

√
∆t (B.21)

where ηm = η|t=t′ .

The Euler scheme therefore generalizes to numerical integration of (B.9), subject to the

initial condition, say X (t = 0) = X0. (B.21) is iterated by choosing a noise term, ηn, at

every time–step, according to the Box–Muller algorithm (B.8).
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As with the numerical integration of ordinary differential equations, the Euler scheme is

far from being the most accurate (for a review and comparison of numerical techniques

for the integration of SDEs see [Man89, Man97]). However, provided that the time–step

∆t is chosen to be small enough, it is generally fairly reliable [Man97]. In the simulations

performed for this thesis, stability and convergence were confirmed by trying several different

time–steps. It was generally found that ∆ = 0.1 gave accurate results, while also allowing

fast integration.
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Archiv – European Journal of Physiology, 386:1–9, 1980.

[BBJ89] A.R. Bulsara, R.D. Boss, and E.W. Jacobs. Noise effects in an electronic

model of a single neuron. Biological Cybernetics, 61:211–222, 1989.

[BC97] P.C. Bressloff and S. Coombes. Physics of the extended neuron. Interna-

tional Journal of Modern Physics B, 11(20):2343–2392, 1997.

[BCR+82] A. Borsellino, F. Carlini, M. Riani, M.T. Tuccio, A. DeMarco, P. Penengo,

and A. Trabucco. Effects of visual angle on perspective reversal for ambigu-

ous patterns. Perception, 11:263–273, 1982.

[BDA+72] A. Borsellino, A. DeMarco, A. Allazetta, S. Rinesi, and B. Bartolini. Re-

versal time distribution in the perception of visual ambiguous stimuli. Ky-

bernetik, 10:139–144, 1972.

[BG96] A.R. Bulsara and L. Gammaitoni. Tuning in to noise. Physics Today, pages

39–45, March 1996.

[BHD+98] H.A. Braun, M.T. Huber, M. Dewald, K. Schäffer, and K. Voigt. Computer
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Internationales de Physiologie, 49:129–152, 1939.

[Per92] P. Peretto. An Introduction to the Modelling of Neural Networks. Mono-

graphs and Texts in Statistical Physics. Cambridge University Press, 1992.

[Pla81] R.E. Plant. Bifurcation and resonance in a model for bursting nerve–cells.

Journal of Mathematical Biology, 11(15):15–32, 1981.



BIBLIOGRAPHY 155

[PM88] S. Park and K. Miller. Random number generators: Good ones are hard

to find. Communications of the Association for Computing Machinery,

31(10):1192–1201, 1988.

[PTVF92] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes in C: the Art of Scientific Computing. Cambridge University Press,

second edition, 1992.

[RBL98] P. Roper, P.C. Bressloff, and A. Longtin. A phase model of temperature–

dependent mammalian cold receptors. Neural Computation, 1998. Submit-

ted.

[Rei98] L. Reichl. A Modern Course in Statistical Physics. Wiley–Interscience, New

York, second edition, 1998.

[Ric54] S.O. Rice. Mathematical analysis of random noise. In N. Wax, editor,

Selected Papers on Noise and Stochastic Processes, pages 133–294. Dover

Publications, 1954.

[Ric95] L.M. Ricciardi. Diffusion models of neuron activity. In M. Arbib, editor,

Handbook of Brain Theory and Neural Networks, pages 299–304. MIT Press,

1995.

[Rin87] J. Rinzel. A formal classification of bursting mechanisms in excitable sys-

tems. In E. Teramoto and M. Yamaguti, editors, Mathematical Topics in

Population Biology, Morphogenesis and Neurosciences, number 71 in Lec-

ture Notes in Biomathematics, pages 267–281. Springer–Verlag, 1987.

[Ris89] H. Risken. The Fokker–Planck Equation. Springer Verlag, New York, second

edition, 1989.

[RL87] J. Rinzel and Y.S. Lee. Dissection of a model for neuronal parabolic bursting.

Journal of Mathematical Biology, 25:653–675, 1987.
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